Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The hydrogen-disordered structure of ice III makes it difficult to analyze its vibrational spectrum theoretically. To clarify the contribution of hydrogen bonds (HBs), we constructed a 24-molecule supercell to mimic the real structure and performed first-principles density functional theory calculations. The calculated curve of phonon density of states showed good correspondence with the experimental data. Based on the theory of two kinds of HB vibrational modes, we analyzed the distributions of two-bond modes and four-bond modes. The energy splitting of these modes results in a flat vibrational band, which is a common phenomenon in high-pressure ice phases. These findings verified the general rule that there are two types of HB vibrations in ice, thereby furthering our understanding of HB interactions in water ice and their broad role in nature.

Details

Title
Computational Analysis of Hydrogen Bond Vibrations of Ice III in the Far-Infrared Band
Author
Si-Yuan, Ning; Jing-Wen, Cao; Xiao-Yan, Liu; Hao-Jian, Wu; Xiao-Qing, Yuan; Xiao-Tong, Dong; Yi-Ning, Li; Jiang, Yan; Zhang, Peng  VIAFID ORCID Logo 
First page
910
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734352
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2693968864
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.