Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper explains the mathematical foundations of a method for modelling semi-rigid unions. The unions are modelled using rotational rather than linear springs. A nonlinear second-order analysis is required, which includes both the effects of the flexibility of the connections as well as the geometrical nonlinearity of the elements. The first task in the implementation of a 2D Beam element with semi-rigid unions in a nonlinear finite element method (FEM) is to define the vector of internal forces and the tangent stiffness matrix. After defining the formula for this vector and matrix in the context of a semi-rigid steel frame, an iterative adjustment of the springs is proposed. This setting allows a moment–rotation relationship for some given load parameters, dimensions, and unions. Modelling semi-rigid connections is performed using Frye and Morris’ polynomial model. The polynomial model has been used for type-4 semi-rigid joints (end plates without column stiffeners), which are typically semi-rigid with moderate structural complexity and intermediate stiffness characteristics. For each step in a non-linear analysis required to adjust the matrix of tangent stiffness, an additional adjustment of the springs with their own iterative process subsumed in the overall process is required. Loops are used in the proposed computational technique. Other types of connections, dimensions, and other parameters can be used with this method. Several examples are shown in a correlated analysis to demonstrate the efficacy of the design process for semi-rigid joints, and this is the work’s application content. It is demonstrated that using the mathematical method presented in this paper, semi-rigid connections may be implemented in the designs while the stiffness of the connection is verified.

Details

Title
Nonlinear Analysis of Rotational Springs to Model Semi-Rigid Frames
Author
Rodríguez González, César Antonio  VIAFID ORCID Logo  ; Caparrós-Mancera, Julio José  VIAFID ORCID Logo  ; Hernández-Torres, José Antonio  VIAFID ORCID Logo  ; Rodríguez-Pérez, Ángel Mariano  VIAFID ORCID Logo 
First page
953
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
10994300
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2693995558
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.