Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The edge wave on a uniform-sloped seabed was described by the velocity-potential function by Mok and Yeh in 1999. Edge waves cannot be extended above a certain level from the still-water level, and the upper limit of the run-up of the edge waves for given conditions is found here. In this study, quantitative mass transport by the edge waves of the beach is introduced. The maximum run-up height is decided from the wave’s amplitude at shoreline, and the maximum run-up distance from the shoreline is proportional to the wavelength of the edge waves. The fluid alongshore-mass-transport profile shows that the strongest mass transport rate corresponds to the position offshoreward multiplied by 0.0362 times the wavelength, and its magnitude is 1.23 times the mass-transport rate at the shoreline. The maximum cross-sectional total mass-transport rate is 0.214 times the mass transport at the shoreline, multiplied by the wavelength for the maximum run-up condition. This study suggests that edge waves cannot be increased infinitely and that there is a maximum run-up on the coast.

Details

Title
Maximum Run-Up and Alongshore Mass Transport Due to Edge Waves
Author
Ho-Jun, Yoo 1 ; Kim, Hyoseob 2 ; Jang, Changhwan 3 ; Ki-Hyun, Kim 1 ; Tae-Soon Kang 1 

 Department of Coastal Management, Geosystem Research Corp, Gunpo 15807, Korea; [email protected] (H.-J.Y.); [email protected] (K.-H.K.); [email protected] (T.-S.K.) 
 Department of Civil Engineering, Kookmin University, Seoul 02707, Korea; [email protected] 
 Division of Smart Construction and Environmental Engineering, Daejin University, Pocheon 11159, Korea 
First page
894
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20771312
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2693997002
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.