Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Conventionally, hyperimmune globulin drugs manufactured from pooled immunoglobulins from vaccinated or convalescent donors have been used in treating infections where no treatment is available. This is especially important where multi-epitope neutralization is required to prevent the development of immune-evading viral mutants that can emerge upon treatment with monoclonal antibodies. Using microfluidics, flow sorting, and a targeted integration cell line, a first-in-class recombinant hyperimmune globulin therapeutic against SARS-CoV-2 (GIGA-2050) was generated. Using processes similar to conventional monoclonal antibody manufacturing, GIGA-2050, comprising 12,500 antibodies, was scaled-up for clinical manufacturing and multiple development/tox lots were assessed for consistency. Antibody sequence diversity, cell growth, productivity, and product quality were assessed across different manufacturing sites and production scales. GIGA-2050 was purified and tested for good laboratory procedures (GLP) toxicology, pharmacokinetics, and in vivo efficacy against natural SARS-CoV-2 infection in mice. The GIGA-2050 master cell bank was highly stable, producing material at consistent yield and product quality up to >70 generations. Good manufacturing practices (GMP) and development batches of GIGA-2050 showed consistent product quality, impurity clearance, potency, and protection in an in vivo efficacy model. Nonhuman primate toxicology and pharmacokinetics studies suggest that GIGA-2050 is safe and has a half-life similar to other recombinant human IgG1 antibodies. These results supported a successful investigational new drug application for GIGA-2050. This study demonstrates that a new class of drugs, recombinant hyperimmune globulins, can be manufactured consistently at the clinical scale and presents a new approach to treating infectious diseases that targets multiple epitopes of a virus.

Details

Title
GMP Manufacturing and IND-Enabling Studies of a Recombinant Hyperimmune Globulin Targeting SARS-CoV-2
Author
Mizrahi, Rena A 1   VIAFID ORCID Logo  ; Lin, Wendy Y 2 ; Gras, Ashley 1 ; Niedecken, Ariel R 1 ; Wagner, Ellen K 1 ; Keating, Sheila M 1 ; Ikon, Nikita 1 ; Manickam, Vishal A 1 ; Asensio, Michael A 1 ; Jackson, Leong 1 ; Medina-Cucurella, Angelica V 1 ; Benzie, Emily 1 ; Carter, Kyle P 1 ; Chiang, Yao 1 ; Edgar, Robert C 1   VIAFID ORCID Logo  ; Leong, Renee 1 ; Yoong Wearn Lim 1   VIAFID ORCID Logo  ; Simons, Jan Fredrik 1 ; Spindler, Matthew J 1 ; Stadtmiller, Kacy 1 ; Wayham, Nicholas 1 ; Büscher, Dirk 3 ; Jose Vicente Terencio 3 ; Clara Di Germanio 4 ; Chamow, Steven M 2 ; Olson, Charles 2 ; Pino, Paula A 5 ; Park, Jun-Gyu 6 ; Hicks, Amberlee 5 ; Ye, Chengjin 6 ; Garcia-Vilanova, Andreu 5   VIAFID ORCID Logo  ; Martinez-Sobrido, Luis 7   VIAFID ORCID Logo  ; Torrelles, Jordi B 7   VIAFID ORCID Logo  ; Johnson, David S 1   VIAFID ORCID Logo  ; Adler, Adam S 1   VIAFID ORCID Logo 

 GigaGen, Inc., South San Francisco, CA 94080, USA; [email protected] (R.A.M.); [email protected] (A.G.); [email protected] (A.R.N.); [email protected] (E.K.W.); [email protected] (S.M.K.); [email protected] (N.I.); [email protected] (V.A.M.); [email protected] (M.A.A.); [email protected] (J.L.); [email protected] (A.V.M.-C.); [email protected] (E.B.); [email protected] (K.P.C.); [email protected] (Y.C.); [email protected] (R.C.E.); [email protected] (R.L.); [email protected] (Y.W.L.); [email protected] (J.F.S.); [email protected] (M.J.S.); [email protected] (K.S.); [email protected] (N.W.); [email protected] (D.S.J.) 
 Alira Health, Inc., Framingham, MA 01702, USA; [email protected] (W.Y.L.); [email protected] (S.M.C.); [email protected] (C.O.) 
 Grifols S.A., 08174 Sant Cugat del Vallès, Spain; [email protected] (D.B.); [email protected] (J.V.T.) 
 Vitalant Research Institute, San Francisco, CA 94118, USA; [email protected] 
 Population Health Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; [email protected] (P.A.P.); [email protected] (A.H.); [email protected] (A.G.-V.); [email protected] (L.M.-S.); [email protected] (J.B.T.) 
 Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; [email protected] (J.-G.P.); [email protected] (C.Y.) 
 Population Health Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; [email protected] (P.A.P.); [email protected] (A.H.); [email protected] (A.G.-V.); [email protected] (L.M.-S.); [email protected] (J.B.T.); Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; [email protected] (J.-G.P.); [email protected] (C.Y.) 
First page
806
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20760817
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2694023014
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.