Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

We demonstrate the potential for pushbroom Digital Aerial Photogrammetry (DAP) to enhance forest modeling (and mapping) over large areas, especially when combined with multitemporal Landsat derivatives. As part of the National Agricultural Imagery Program (NAIP), high resolution (30–60 cm) photogrammetric forest structure measurements can be acquired at low cost (as low as $0.23/km2 when acquired for entire states), repeatedly (2–3 years), over the entire conterminous USA. Our three objectives for this study are to: (1) characterize agreement between DAP measurements with Landsat and biophysical variables, (2) quantify the separate and combined explanatory power of the three auxiliary data sources for 19 separate forest attributes (e.g., age, biomass, trees per hectare, and down dead woody from 2015 USFS Forest Inventory and Analysis plot measurements in Washington state, USA) and (3) assess local biases in mapped predictions. DAP showed the greatest explanatory power for the widest range of forest attributes, but performance was appreciably improved with the addition of Landsat predictors. Biophysical variables contribute little explanatory power to our models with DAP or Landsat variables present. There is need for further investigation, however, as we observed spatial correlation in the coarse single-year grid (≈1 plot/25,000 ha), which suggests local biases at typical scales of mapped inferences (e.g., county, watershed or stand). DAP, in combination with Landsat, provides an unparalleled opportunity for high-to-medium resolution forest structure measurements and mapping, which makes this auxiliary data source immediately viable to enhance large-scale forest mapping projects.

Details

Title
Pushbroom Photogrammetric Heights Enhance State-Level Forest Attribute Mapping with Landsat and Environmental Gradients
Author
Strunk, Jacob L 1 ; Bell, David M 2   VIAFID ORCID Logo  ; Gregory, Matthew J 3   VIAFID ORCID Logo 

 USDA Forest Service Pacific Northwest Research Station, 3625 93rd Ave SW, Olympia, WA 98512, USA 
 USDA Forest Service Pacific Northwest Research Station, 3200 SW Jefferson Way, Corvallis, OR 97331, USA; [email protected] 
 Department of Forest Ecosystems and Society, Oregon State University, 321 Richardson Hall, Corvallis, OR 97331, USA; [email protected] 
First page
3433
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2694028192
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.