Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Metasurfaces have gained growing interest in recent years due to their simplicity in manufacturing and lower insertion losses. Meanwhile, they can provide unprecedented control over the spatial distribution of transmitted and reflected optical fields in a compact form. The metasurfaces are a kind of planar array of resonant subwavelength components that, depending on the intended optical wavefronts to be sculpted, can be strictly periodic or quasi-periodic, or even aperiodic. For instance, gradient metasurfaces, a subtype of metasurfaces, are designed to exhibit spatially changing optical responses, which result in spatially varying amplitudes of scattered fields and the associated polarization of these fields. This paper starts off by presenting concepts of anomalous reflection and refraction, followed by a brief discussion on the Pancharatanm–Berry Phase (PB) and Huygens’ metasurfaces. As an introduction to wavefront manipulation, we next present their key applications. These include planar metalens, cascaded meta-systems, tunable metasurfaces, spectrometer retroreflectors, vortex beams, and holography. The review concludes with a summary, preceded by a perspective outlining our expectations for potential future research work and applications.

Details

Title
Recent Advancement in Optical Metasurface: Fundament to Application
Author
Ullah, Naqeeb 1   VIAFID ORCID Logo  ; Zhao, Ruizhe 2 ; Huang, Lingling 2 

 Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; [email protected] (N.U.); [email protected] (R.Z.); Department of Electronic Engineering, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta 87300, Pakistan 
 Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; [email protected] (N.U.); [email protected] (R.Z.) 
First page
1025
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
2072666X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2694039556
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.