Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Dracaena cochinchinensis has special defensive reactions against wound stress. Under wound stress, D. cochinchinensis generates a resin that is an important medicine known as dragon’s blood. However, the molecular mechanism underlying the defensive reactions is unclear. Metabolomics and transcriptomics analyses were performed on stems of D. cochinchinensis at different timepoints from the short term to the long term after wounding. According to the 378 identified compounds, wound-induced secondary metabolic processes exhibited three-phase characteristics: short term (0–5 days), middle term (10 days–3 months), and long term (6–17 months). The wound-induced transcriptome profile exhibited characteristics of four stages: within 24 h, 1–5 days, 10–30 days, and long term. The metabolic regulation in response to wound stress mainly involved the TCA cycle, glycolysis, starch and sucrose metabolism, phenylalanine biosynthesis, and flavonoid biosynthesis, along with some signal transduction pathways, which were all well connected. Flavonoid biosynthesis and modification were the main reactions against wound stress, mainly comprising 109 flavonoid metabolites and 93 wound-induced genes. A group of 21 genes encoding CHS, CHI, DFR, PPO, OMT, LAR, GST, and MYBs were closely related to loureirin B and loureirin C. Wound-induced responses at the metabolome and transcriptome level exhibited phase characteristics. Complex responses containing primary metabolism and flavonoid biosynthesis are involved in the defense mechanism against wound stress in natural conditions, and flavonoid biosynthesis and modification are the main strategies of D. cochinchinensis in the long-term responses to wound stress.

Details

Title
Transcriptomics and Metabolomics Analyses Reveal Defensive Responses and Flavonoid Biosynthesis of Dracaena cochinchinensis (Lour.) S. C. Chen under Wound Stress in Natural Conditions
Author
Liu, Yang 1 ; Gao, Shixi 1   VIAFID ORCID Logo  ; Zhang, Yuxiu 2 ; Zhang, Zhonglian 3 ; Wang, Qiuling 1 ; Xu, Yanhong 1 ; Wei, Jianhe 4 

 Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; [email protected] (Y.L.); [email protected] (S.G.); [email protected] (Q.W.) 
 Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou 570311, China; [email protected] 
 Yunnan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical College and Peking Union Medical College, JingHong 666100, China; [email protected] 
 Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; [email protected] (Y.L.); [email protected] (S.G.); [email protected] (Q.W.); Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou 570311, China; [email protected] 
First page
4514
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2694041187
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.