Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

We proposed an infrared narrowband metamaterial perfect absorber (MPA) which is induced by toroidal dipole resonance in a dielectric-metal hybrid system. The MPA is composed of amorphous-silicon (a-Si) nanodisk quadrumer clusters, dielectric spacer, and Au substrate, where the dielectric spacer is inserted between Si disk quadrumer and Au substrate. Near field distribution and multipole decomposition of far-field, scattering powers show that toroidal dipole mode is formed by opposite phase magnetic dipoles in neighboring Si nanodisks. The effects of geometric and material parameters on absorption characteristics were explored. The sensing performance of the MPA was also evaluated. The proposed MPA has potential applications in air sensing applications. Since the nanodisks quadrumer of the MPA retains C4v symmetry, perfect absorption band is polarization independent. Furthermore, the absorption quality factor of the hybrid dielectric-metal hybrid absorber is higher than that of all-metal perfect absorbers, thanks to the low loss feature of the dielectric resonator.

Details

Title
Toroidal Dipole Excitation in Metamaterial Perfect Absorber Consisting of Dielectric Nanodisks Quadrumer Clusters and Spacer on Metal Substrate
Author
Cai, Yuepei; Huang, Yong; Zhu, Keyong
First page
462
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
23046732
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2694045876
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.