Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Cavitation will increase the leakage and discharge pressure fluctuation of axial piston pumps. In particular, specific cavitation damage may aggravate the pressure impact and performance degradation. The influence of the specific cavitation damage on the discharge pressure is unclear, and the need for fault detection of this damage is urgent. In this paper, we propose a discharge pressure-based model and fault detection methodology for the specific cavitation damage of axial piston pumps. The discharge pressure model with specific damage is constructed using a slender hole. The simulation model is solved through numerical integration. Experimental investigation of cavitation damage detection is carried out. Discharge pressure features in the time domain and frequency domain are compared. The results show that waveform distortions, spectrum energy relocation, generation of new frequencies and sidebands can be used as features for fault detection regarding the specific cavitation damage of axial piston pumps.

Details

Title
Modelling and Fault Detection for Specific Cavitation Damage Based on the Discharge Pressure of Axial Piston Pumps
Author
Xia, Shiqi 1   VIAFID ORCID Logo  ; Xia, Yimin 1 ; Xiang, Jiawei 2   VIAFID ORCID Logo 

 State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410017, China; [email protected] 
 College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325035, China; [email protected] 
First page
2461
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2694061727
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.