1. Introduction
Fast radio bursts (FRBs) are mysterious millisecond-duration radio pulses which occur randomly on the sky (e.g., [1,2,3]). FRBs were first found in archived pulsar survey data more than a decade ago [1], and more than 600 FRBs were reported as of April 2022 (e.g., [4,5,6]). However, the detection rate of FRBs is considered to be – [2,6,7,8,9,10,11,12,13,14,15,16,17], which means that FRBs are not uncommon in the Universe; e.g., 1652 repeating events from FRB 20121102A [18] and 1863 bursts from FRB 20201124A [19] were recently detected by the Five-hundred-meter Aperture Spherical radio Telescope (FAST, Li et al. [20]). The observed dispersion measures () are larger than the contributions from the Milk Way () (except FRB 200428, which was confirmed to be from the Galactic magnetar SGR 1935+2154 [21,22,23,24,25,26,27]), which suggests an extragalactic, even cosmological origin in most cases.
It should be mentioned that there is no unambiguous physical origin for FRBs now. In general, FRBs’ millisecond duration and high indicate the high brightness temperature (K – K) [28] and the corresponding isotropic energy (E) released (– erg) [5,22,29,30]. Many progenitor models have been proposed to figure out what FRBs are (for a review, see, e.g., [31]), such as mergers of compact objects [32], flaring magnetars [33], young magnetars in supernova remnants [34], collisions between neutron star/magnetar and asteroids [35,36,37,38,39], collisions between episodic magnetic blobs [40], and massive black hole model [41]. However, none of the current models can explain all the observational properties of FRBs. Fortunately, great progress in observations can help to constrain the progenitor model of FRBs; there has been a great leap forward in the research of FRBs. For example, the periodic activity of repeating FRB 20180916B suggests that the source is modulated by the orbital motion of a binary system [42]. Additionally, the discovery of Galactic FRB 200428 indicates the origin of a magnetar (e.g., [43]). In addition, some other models, e.g., the precession like a gyroscope model [43,44,45,46,47] and the spin period of isolated neutron star/magnetars model [48,49], can also work.
With the increase in FRBs monitoring by many radio telescopes, such as Very Large Array (VLA, Thompson et al. [50]), Australian Square Kilometer Array Pathfinder (ASKAP) [51], Canadian Hydrogen Intensity Mapping Experiment (CHIME, CHIME/FRB Collaboration et al. [52]) and FAST, it was found that some events are apparently “non-repeating,” i.e., they did not repeat within a monitoring period. On the other hand, some sources have been repeating (e.g., [53,54,55,56,57]), which led to the successful identification of host galaxies and the precise mensuration of redshifts. Li et al. [5] analyzed 133 FRBs, including 110 non-repeating and 23 repeating ones, and proposed to classify FRBs into short and long groups according to pulse duration less than 100 ms or not. Interestingly, they found long FRBs are on average more energetic than short ones about two orders of magnitude. Moreover, they pointed out that FRBs could be used as a standard candle because peak luminosity becomes weakly dependent of the cosmological distance at higher redshift. Some observational properties of FRBs are similar to those of short and long gamma-ray bursts [58,59,60]. However, it is still uncertain whether this classification of FRBs is derived from the intrinsic physical characteristics, and whether repeating or “non-repeating” is due to observational selection bias—e.g., the monitor is not in the most active window for the “non-repeating” FRBs. Although the astrophysical origins of repeating and non-repeating FRBs are considered to be different (e.g., [61,62,63,64]), another viewpoint that most FRBs may be repeating sources has also been proposed [5,65,66,67]. It is now accepted that there are usually two types of FRBs, i.e., repeating FRBs and non-repeating FRBs. It is worth noting that the luminostiy function can place important constraints on the physical origins of FRBs and possible progenitors (e.g., [31,61,67,68,69,70,71,72]). Niino [69] has hypothesized three luminosity distribution function models (i.e., standard candle, power-law, and power-law + exponential cutoff) to investigate how differences in luminosity functions (LF) affect the observation properties of FRBs, and used the LF model and the cosmic FRB rate density to examine the distribution of , the distribution, and the correlation. Luo et al. [61] constructed a Schechter luminosity function of 33 FRBs samples with a power-law index ranging from −1.8 to −1.2. Unfortunately, the LF of repeating FRBs has not been constructed yet due to the limit of numbers in the past. Hence, it is important and necessary to investigate their statistical characteristics and build the apparent intensity distribution function (IDF) and the LF of these repeating FRBs in order to disclose more natural differences from those non-repeating ones.
Our article is organized as follows. In Section 2, we introduce the FRB sample and present the statistical analyses of their parameters. The intensity distribution function of our repeating FRB sample is derived in Section 3. In Section 4, we construct the differential broken power-law LF of repeating FRBs and non-repeating FRBs based on the k-corrected isotropic luminosity (L). In Section 5, our conclusion and discussion are presented. The flat CDM cosmological parameters = 67.74 km s Mpc, = 0.0486, = 0.3089, = 0.6911 have been adopted throughout the paper [73].
2. The Statistical Properties of Repeating FRBs
2.1. Distributions of Extra-Galactic Dispersion Measure and Total Energy
Currently, about 600 FRBs have been reported (including repeating bursts and apparent non-repeating bursts). Here, we collect the observation data of 21 repeating FRBs and 571 non-repeating FRBs. The sample of repeating FRBs was extracted from FRBCAT and several reported observational datasets (e.g., [53,54,55,56,74]). We list the key physical parameters of 21 repeating FRBs in Table 1. It is worth mentioning that for the observed peak flux density () listed in Table 1, which is used as a representative of the brightness of an FRB, we chose the brightest one in every monitoring period for one repeating event. Additionally, the last column of Table 1 is the average fluence , which is calculated based on all archived observed fluence () for one repeating FRB. The reason is that multiple observations at different duty-circles inevitably suffer from the observational biases. Another reason is that number of sub-bursts within a repeater varies among distinct FRBs even for a comparable observation time, and thus is very difficult to count accurately. For instance, 1652 sub-bursts from FRB 20121102A [18] and 1863 sub-bursts from FRB 20201124A [19] were recently detected by FAST. In addition, the fluence fluctuations between different sub-bursts for one repeating FRB could be very large. For example, the fluences of FRB 20171019A were found to range from 0.37 to 388 Jy ms [56]. Although it is uncertain whether repeating or “non-repeating” is due to the observational select bias (e.g., [13,56,62] for a discussion of repeating FRBs), here we ignore the probability that the present non-repeating events may be found to be repeating in future, and treat them as real non-repeating events, whose corresponding parameters are not presented in the text because of their large number. Note that in Table 1, we consider the observed pulse width instead of the intrinsic one. The reason is that the intrinsic pulses of the narrow FRBs would be broadened due to scattering, and the scattering time scale is affected by the local environment of the FRB and is model-dependent, which results in a larger uncertainty. An appendix of non-repeating FRBs samples has been added separately at the end of the paper (for more details, see Table A1). Moreover, we did not consider FRB 200428 in our non-repeating burst sample, which is the only event detected in the Milky Way [21,22,23,25,75].
The is a key quantity in the study of FRBs. CHIME/FRB Collaboration et al. [55] argued that FRBs can be divided into two subclasses (repeating and non-repeating FRBs) according to the current observations. If repeating FRBs indeed differ from the apparent non-repeating FRBs—for example, the two subclasses have different host or local environments, or one population is intrinsically more bright—the distributions of the sub-samples could be obviously different. Meanwhile, their extra-Galactic dispersion measures () could be distinctly distributed. We applied the Anderson–Darling (A–D) test to different kinds of FRBs, see Figure 1a,b, and list the statistical results in Table 2, where it is shown that the distributions of the non-repeating, repeating and all FRBs can be well described by a log-normal function. Furthermore, we found the mean values of are (0.70 dex) for non-repeating FRBs and (0.39 dex) for repeating FRBs via a Gauss fit. Simultaneously, we found that the mean values of of all FRBs are (0.67 dex). It is notable that the mean value of non-repeating FRBs is evidently larger than that of repeating FRBs. To check whether the distributions of non-repeaters and repeaters are same or not, we used a Mann–Whitney–Wilcoxon (M–W–W) test [76,77] and obtained the statistic with a p-value of 0.031, less than the significance threshold of 0.05, which demonstrates that the distributions of the two kinds of FRBs may have different progenitors or different physical mechanisms [31,64,78]. Notably, the is mainly contributed by the intergalactic medium, the host galaxies or the local environments. Unfortunately, what we have learned about the host galaxies is so little that the distributions are still uncertain and need to be verified by more observations in future.
In addition, we found that the radio energy of repeating FRBs ranges from to erg. We also used the Gauss function to fit the energy statistical distribution of repeating FRBs. As shown in panel Figure 1c, the total energy of repeating FRBs roughly follows a log-normal distribution with a mean value of erg and a scatter of 1.03 dex. Interesting, our result is roughly consistent with the early estimates of Li et al. [5] (– erg) for the repeating FRBs. Meanwhile, it is worth mentioning that this result is different from the bimodal energy distribution (a log-normal function and a generalized Cauchy function, with the peak of the energy distribution of erg) of a sub-sample of all the bursts from FRB 20121102A found by Li et al. [18] with FAST. Alternatively, it is possible that the bimodal energy distribution could be existent for a single burst but disappear when many bimodal distributions of diverse repeating FRBs are randomly mixed. However, Li et al. [5] noticed that the total energy of non-repeaters is on average larger than that of repeaters about one order of magnitude, which may demonstrate that at least some of repeating and non-repeating FRBs have different physical origins.
2.2. Correlations between Some Characteristic Parameters
In Figure 2, the relationships of the of repeating FRBs are illustrated. Figure 2a shows that is not correlated with . Note that the intrinsic width of the narrow FRBs is difficult to discern due to dispersion smearing and scattering broadening. Scattering is model dependent, and the assumptions of the model introduce high uncertainty. Therefore, we used the observed pulse width instead of the intrinsic pulse width in our work. Figure 2b shows that does not correlate with . As shown in Figure 2c, the radio energy and the are positively correlated with a Pearson correlation coefficient of 0.81 and can be well-fitted. The power-law relation is , which is roughly consistent with the tight correlation of non-repeating FRBs found by Li et al. [80], who argued that the positive correlation may be attributed to an observation selection effect—i.e., a fainter event is easier to be observed at a nearer distance. We found from Panels (d) and (e) that is not correlated with but obviously correlated with the . Note that our relation is inconsistent with that of non-repeaters in [80]. The of the repeated FRBs spans three magnitudes and is more dispersive than the of the non-repeating FRBs sample of Li et al. [80], so that and are not correlated. Meanwhile, we found that there is a positive correlation between and the radio energy, as shown in Figure 2f. Li et al. [80] analyzed the correlations of key parameters of 16 non-repeating FRBs and found no clear correlation between energy and pulse width. For our repeating FRBs, the radio energy E and the pulse width , respectively, span four and three orders of magnitude. The best-fitted power-law relation is , with a correlation coefficient of 0.71 and a chance probability of . This means that the repeating FRB pulse with a longer duration has a greater energy release generally, which is similar to those non-repeaters reported by Li et al. [80], and both of which are consistent with the findings in [5], where the averaged isotropic energies of long FRBs were found to be larger than those of short FRBs by at least two orders of magnitude, not only for non-repeating FRBs but also for repeating FRBs.
Figure 2e,f seems to show that , and E may be related. This motivated us to perform multiple linear regression fitting for these three parameters in Figure 3. The three-parameter relation can be well described by a binary linear regression function as
(1)
with a Pearson correlation coefficient of 0.88, which implies that wider FRBs usually hold larger energy outputs and higher values, and vice versa.3. Apparent Intensity Distribution Function of Repeating FRBs
Li et al. [80] applied the of 16 non-repeating FRBs to derive an intensity distribution function (IDF). We considered the IDF of repeating FRBs to be determined by the average fluence () and observed fluence () of the brightest burst for each repeater. We then utilized the average fluence presented in Table 1 to investigate the IDF of 21 repeating FRBs. This was done for several reasons: (1) For one repeating burst, multiple monitor observations in different time periods may lead to the observational bias. (2) The repeaters contain multiple bursts, and the number of monitored subbursts between different repeaters varies—e.g., FAST has recently detected 1652 repeating events from FRB 20121102A [18] and 1863 bursts from FRB 20201124A [19]. (3) There is a certain degree of fluctuation between the fluences of repetitions for one repeating FRB; for example, the fluence of the repetitions from faint FRB 20171019A have a large range of 0.37 to ∼ 388 [56]. Therefore, we took the mean fluence as a statistical variable for each repeater in order to build an apparent IDF of the repeating FRBs. In addition, we got rid of the faint FRB 20171019A from our repeating FRB sample because of its large fluctuations of fluence in the following calculations.
We assumed that FRBs can be considered as standard candles, and defined that the apparent IDF of repeating FRBs is in the same form as the function given by Li et al. [80]: (or ), where is the power-law index, is expected for a uniform distribution and A is a constant which depends on the observations and the event rates of FRBs. We group the repeating FRB sample into several fluence intervals with a bin width of , and created the exemplary distributions of , as presented in Figure 4. Then we acquired a best-fit power-law curve for . In Figure 4a, best fit results are shown for a bin width of ; the corresponding power-law index and the coefficient of determination (R-Square) are and 0.99, respectively. Note that the error bars along the x-axis and y-axis are, respectively, and the square root of FRB count in each interval. Meanwhile, we also investigated the influence of bin width selection on the fitted results. In our work, the range of the bin width was selected to be from 0.2 to 6.0 , and the best-fit power-law indices corresponding to each are shown in Figure 4b, where one can see that when is in a range of – Jy ms, the fitted has smaller fluctuations and the corresponding error bar is also small. Hence, the values of were selected to calculate the final average value, which is . To constrain the unknown constant A, we adopted similar calculation processes to those described in detail in Li et al. [80] and compare them with the published event rates of FRBs in the literature in Table 3. The A value in our IDF was obtained to be . As a result, the final IDF of 20 repeating FRBs can be written as
(2)
Similarly, we derived, while adopting , the power-law of IDF for repeating FRBs (see Figure 4d). Furthermore, we got for our IDF. The IDF of repeating FRBs is given by
(3)
In particular, we found that power-law indices and have small differences, which indicates that our results are stable and reliable. If assuming the minimum fluence of 0.36 Jy ms as the threshold, one can estimate that the detection rate of repeating FRBs is at least sky day for and sky day for . Combined with all parameters of FAST [81,82,83], we utilized the method of Li et al. [80], and estimate the detection rate for the 1000 h observation time is about ; that is slightly smaller than that for non-repeating FRBs predicted by Li et al. [80]. It is reasonable, since the current detection rate of non-repeating FRBs is obviously larger than that of repeating FRBs observationally.
4. Differential Bolometric Luminosity Distributions
The luminosity functions of FRBs can be applied to reveal the origins of FRBs, design the optimal searching plan, guide future observations [61,67,80,87], etc. The detection rate of the telescope can be calculated by the luminosity function, and the event rate density at different luminosity ranges sheds light on the origins of FRBs [31,78]. Building the LF requires not only the flux and distance, but also a k-correction of luminosity because of the different observational central frequencies () in the mixed sample of FRBs. According to Zhang [29], the isotropic peak luminosity of a FRB can be calculated with , where is the lumonisity distance calculated with the redshift given by FRBCAT (
The differential distributions of the k-corrected luminosity for 21 repeaters and 571 non-repeaters are shown in Figure 5, where one can notice that the repeaters are normally less luminous than the non-repeaters by about two orders of magnitude. Subsequently, we adopted a broken power-law from [92,93,94] to build the LF as
(4)
where A is the normalized factor; is the break luminosity; and are two power-law indices corresponding to lower and higher luminosity portions. In Figure 5, we can see that the luminosity distributions of both repeating and non-repeating FRBs can be well described by the broken power-law function, and the best-fit parameters are provided in Table 4. We excitingly found that the power-law indices of repeating and non-repeating bursts in the luminous end are the same as within the range from −1.8 to −1.2, constrained by the Schechter luminosity function by Luo et al. [61]. However, we noticed that non-repeaters decline slower that repeaters in the less luminous end instead. In addition, after k-correction for observational frequency, the distributions of luminosity for repeating and non-repeating FRBs are similar at their brightest ends. The characteristic luminosity values are not significantly different.5. Conclusions and Discussion
In this study, we analyzed the observed data of 21 repeating and 571 non-repeating FRBs published and drew the following conclusions:
The extra-Galactic dispersion measures of non-repeating and repeating FRBs were found to be log-normally distributed with mean values of and 349.1 , respectively. The M–W–W test showed that the is drawn from a different distribution.
It was found that the total radio energies of repeating FRBs are log-normally distributed with a mean value of ergs (1.03 dex), which is smaller than to that of non-repeating FRBs, which is consistent with the conclusion in [5]. Surprisingly, the bimodal energy distribution discovered in FRB 20121102A by Li et al. [18] with FAST was not recovered in our repeating FRB sample any more.
We statistically analyzed the relationships among , , , E and , and found that most correlations between them are similar to those of non-repeaters given by Li et al. [80], except that the relation of repeaters is tighter. The statistical results hint that the spatial distribution and the local environments of two samples of FRBs may be different, although more samples are needed to verify our argument, as noted by CHIME/FRB Collaboration et al. [55] and Fonseca et al. [74].
We constructed a three-parameter relation to be , indicating that longer FRBs usually have larger extra-galactic dispersion measures and more energy releases, which supports the early findings by Li et al. [5], no matter whether a FRB is repeating or not.
We assume that FRBs can be considered as standard candles homogeneously in a flat Euclidean space, with an IDF of (or ), where a should be theoretically 2.5. Using the averaged fluence as a characteristic quantity, we built the IDF of repeating FRBs as . Likewise, using the observed fluence as a statistical indicator, we obtained the IDF as . The power-law index () of IDF deviates from the theoretical value of 2.5 in a flat Euclidean space, and shows that the repeating FRBs may be not uniformly distributed. Assuming the averaged minimum fluence as the threshold, we predicted the detection rate of repeaters to be about sky day or sky day; that is slightly lower in contrast with those non-repeating ones.
Finally, we constructed and compared the luminosity functions of repeating and non-repeating FRBs. Interestingly, we found that the luminosity functions for both kinds of FRBs can be well characterized by a broken power-law relation; their power-law indices at their luminous ends are equal to , despite the discrepancy at their less-luminous ends.
Observationally, the power-law relation of , especially its power-law index a, indeed changes largely for different telescopes, owing to many factors, such as the selection effects/biases, the instrumental sensitivity, the sample incompleteness, the poor localizations, the small sample size or the cosmological effect (e.g., [12,90,96]), which may cause the relation to deviate from the theoretical form of in a Euclidean space. Caleb et al. [68] pointed out by simulations that the slope of the logarithmic relation is mainly determined by cosmological effect and got , which matches a uniform distribution of FRBs roughly. Even for the same telescope, the deduced power-law indices could be inconsistent. For instance, Macquart and Ekers [90] found and James et al. [96] obtained for Parkes FEBs. However, these power-law indices cannot show that the FRBs are not distributed in a Euclidean space. It is also why we took the average fluence as a characteristic quantity. Considering all above complex situations, we have assumed a universal slope in order to reduce the influences of uncertain factors on the relation.
In addition, we have constructed the luminosity functions for our samples of repeating and non-repeating FRBs on the basis of the k-corrected isotropic luminosities. It was found that the k-corrected luminosity of repeaters and non-repeaters span three and six orders of magnitude, respectively. On average, the repeaters are less energetic than the non-repeaters, which is coincident with [5]. The luminosity distributions of the two samples of FRBs can be well described by a broken power-law function with a break luminosity of for non-repeaters and for repeaters. This may imply that either repeaters or non-repeaters can be redivided into low- and high-luminosity types originating from different progenitors.
As addressed above, the distributions of the two samples have different distributions, which suggests that the majority of FRBs might have different astrophysical origins. Recent observations indicate that both kinds of FRBs may have distinct environments, such as dense, offset and star formation distribution (e.g., [97,98]). Additionally, there exist some special observed properties (such as polarization, rotation measures and the complex frequency–time structure) and a difference between FRB host galaxies [99,100,101]. Thus, these observational differences imply the emergence of subpopulations of FRBs. However, there are several recent works claiming no significant differences in the host galaxy properties (e.g., [102,103]). One possible reason is that the number of FRBs with known host galaxies is still limited currently. There is a debate about repeating and non-repeating (or more subclasses) or having a single population [62,104,105]. This means that the current classification results from the observations may be due to observational selection bias, e.g., if the observational period is not in the most active window for the individual FRBs [63,105], and one non-repeating burst identified currently may be a potential repeating FRB, as was the case for FRB 20171019A and FRB 20180301A. It may be just a few lucky cases, but we have probably missed many faint bursts of other FRBs. Nonetheless, the large sample of known FRBs is starting to show trends that suggest subclasses based on burst morphology and frequency–time structure (the downward frequency drift of sub-bursts [55,74,106], linear polarization and negligible circular polarization [107]; and some sources show periodicity [108,109,110]). The observations in future should be focused on the FRB events which have relatively high probabilities of becoming repeating FRBs (see also [5]). When more FRBs are accurately localized, more useful information (such as , redshift, hosts and local environments of repeaters and apparently one-off FRBs) can be obtained from the direct observations, and the true LF will be accurately built as a cosmological probe to reveal the nature of FRBs.
Conceptualization, Z.Z.; methodology, Z.Z. and L.L.; software, K.Z.; validation, K.Z., L.L. and Z.Z.; formal analysis, Z.Z.; investigation, K.Z.; resources, Z.Z.; data curation, Q.L., J.L. and M.J.; writing—original draft preparation, K.Z.; writing—review and editing, Z.Z. and L.L.; visualization, K.Z. and Q.L.; supervision, Z.Z.; project administration, Z.Z.; funding acquisition, Z.Z. Correspondence and requests for materials should be addressed to Z.Z. (
The data presented in this study are openly available in the following websites:
We appreciate the referees for their constructive and helpful comments and suggestions that have improved the paper greatly. This study was partly supported by the National Natural Science Foundation of China (grant numbers U2031118 and U1431126) and the science research grants from the China Manned Space Project, CMS-CSST-2021-B11. L. B. Li acknowledges support from the Natural Science Foundation of Hebei Province of China (grant number A2020402010). J. J. Luo acknowledges the Youth Science & Technology Talents Development Project of Guizhou Education Department (No.KY[2022]098).
The authors declare no conflict of interest.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Figure 1. The logarithmic distributions of [Forumla omitted. See PDF.] and radio energy of FRBs. Panel (a) presents the [Forumla omitted. See PDF.] distributions of non-repeating and repeating FRBs and panel (b) displays the [Forumla omitted. See PDF.] distributions of all FRBs. Panel (c) shows the radio energy distribution of repeating events. The dash lines are the best fits to data with a Gauss function.
Figure 2. The correlations of [Forumla omitted. See PDF.] with [Forumla omitted. See PDF.], [Forumla omitted. See PDF.] and E are shown in Panels (a–c) respectively. The [Forumla omitted. See PDF.] is plotted against [Forumla omitted. See PDF.] in Panel (d), [Forumla omitted. See PDF.] in Panel (e) and E in Panel (f). The observed data are symbolized with the filled squares. The solid lines in Panels (c,f) stand for the best fits to data with a power-law function.
Figure 3. Left panel: Correlation among E, [Forumla omitted. See PDF.] and [Forumla omitted. See PDF.] of repeating FRBsis illustrated by the 3D scatter plot. Right panel: The isotropic energy E is plotted against the energy estimated by Equation (1). The solid line is the best fit to the data. The light and the heavy shaded regions are the [Forumla omitted. See PDF.] confidence and the [Forumla omitted. See PDF.] prediction ranges, respectively.
Figure 4. Panel (a) shows an exemplary distribution of [Forumla omitted. See PDF.] for a bin width of [Forumla omitted. See PDF.] Jy ms. The solid line is the best-fit curve. Panel (b) illustrates the best-fit power-law values [Forumla omitted. See PDF.] for each bin width; the solid short horizontal line shows the relatively stable range of [Forumla omitted. See PDF.]–4.2 Jy ms for [Forumla omitted. See PDF.]. Panel (c) shows an example distribution of [Forumla omitted. See PDF.] for a bin width of [Forumla omitted. See PDF.] Jy ms. The solid line is the fitted curve. Panel (d) presents the best-fit power-law values [Forumla omitted. See PDF.] for each bin width; the solid short horizontal line shows the relatively stable range of [Forumla omitted. See PDF.]–4.4 Jy ms for [Forumla omitted. See PDF.].
Figure 5. The luminosity functions of the repeating (Panel a) and non-repeating (Panel b) FRBs. The solid lines stand for the best fits with the power-law function of Equation (3). In each panel, the error bars along the x-axis are simply the standard errors in the corresponding luminosity bins, and the y-axis error bars are the 1-[Forumla omitted. See PDF.] Poisson errors [95].
Key physical parameters of 21 repeating FRBs before September 2021.
TNS Name | z | E |
||||||||
---|---|---|---|---|---|---|---|---|---|---|
FRB 20121102A | 1375 |
|
188.00 | 369.00 |
|
|
|
0.31 | 0.13 | 0.36 |
FRB 20171019A | 1297 |
|
37.00 | 423.80 |
|
40.50 | 219.00 | 0.35 | 34.01 | 101.62 |
FRB 20180814A | 600 |
|
87.00 | 102.38 |
|
8.08 |
21.00 | 0.09 | 0.13 | 22.57 |
FRB 20180908B | 600 |
|
38.00 | 157.70 |
|
|
2.70 | 0.13 | 0.04 | 2.03 |
FRB 20180916B | 600 |
|
200.00 | 149.70 |
|
7.64 |
8.10 | 0.12 | 0.12 | 10.26 |
FRB 20181017A | 600 |
|
43.00 | 1238.00 |
|
0.79 |
16.00 | 1.03 | 60.07 | 8.50 |
FRB 20181030A | 600 |
|
40.00 | 63.50 |
|
12.37 |
7.30 | 0.05 | 0.02 | 4.75 |
FRB 20181119A | 600 |
|
34.00 | 330.00 |
|
0.94 |
2.50 | 0.28 | 0.24 | 1.77 |
FRB 20181128A | 600 |
|
112.00 | 338.20 |
|
1.81 |
4.40 | 0.28 | 0.46 | 3.45 |
FRB 20190116B | 600 |
|
20.00 | 423.60 |
|
1.87 |
2.80 | 0.35 | 0.52 | 1.80 |
FRB20190117A | 600 |
|
48.00 | 345.30 |
|
|
5.90 | 0.29 | 0.64 | 6.36 |
FRB 20190208A | 600 |
|
72.00 | 508.20 |
|
|
2.00 | 0.42 | 0.60 | 1.70 |
FRB 20190209A | 600 |
|
46.00 | 378.60 |
|
0.54 |
2.00 | 0.32 | 0.28 | 1.25 |
FRB 20190213A | 600 |
|
43.00 | 608.50 | 4.00 |
|
3.00 | 0.51 | 1.46 | 1.80 |
FRB 20190212A | 600 |
|
49.00 | 252.40 |
|
|
2.50 | 0.21 | 0.13 | 2.67 |
FRB 20190222A | 600 |
|
87.00 | 373.60 |
|
2.53 |
7.50 | 0.31 | 1.00 | 5.45 |
FRB 20190303A | 600 |
|
29.00 | 192.80 |
|
|
2.30 | 0.16 | 0.06 | 2.47 |
FRB 20190417A | 600 |
|
78.00 | 1300.50 |
|
|
1.70 | 1.08 | 7.40 | 3.10 |
FRB 20190604A | 600 |
|
32.00 | 520.60 |
|
|
8.30 | 0.43 | 2.64 | 5.00 |
FRB 20190711A | 23.8 |
|
56.40 | 536.70 |
|
5.23 |
34.00 | 0.45 | 9.88 | 17.70 |
FRB 20190907A | 600 |
|
53.00 | 256.50 |
|
|
0.90 | 0.21 | 0.05 | 1.10 |
Note: The all data were taken from
The statistical results of
|
FRB Sample | Statistic Value | The Critical Value | p-Value | Methods |
---|---|---|---|---|---|
|
Non-repeating | 0.814 | 1.084 | 0.035 |
A–D test |
|
Repeating | 0.427 | 0.963 | 0.285 |
A–D test |
|
All | 0.727 | 1.085 | 0.058 |
A–D test |
|
Repeating and Non-repeating FRBs | 4328.5 | ... | 0.031 |
M–W–W test |
a The A–D test was executed in logarithmic scale with a significance level of α = 0.01. b A p-value larger than α indicates a log-normal distribution is favored [
Comparison of the deduced event rates of different FRB samples.
Reference | Coefficient A |
FEB Class | ||
---|---|---|---|---|
3 |
|
Thornton et al. [ |
|
non-repeaters |
0.35 |
|
Spitler et al. [ |
|
non-repeaters |
2 |
|
Keane and Petroff [ |
|
non-repeaters |
1.8 |
|
Law et al. [ |
|
non-repeaters |
4 |
|
Rane et al. [ |
|
non-repeaters |
0.13–1.5 |
|
Champion et al. [ |
|
non-repeaters |
3.8 |
|
Crawford et al. [ |
|
non-repeaters |
0.03 |
|
Li et al. [ |
|
non-repeaters |
6 | 587 | Lawrence et al. [ |
|
non-repeaters |
2 |
|
Bhandari et al. [ |
|
non-repeaters |
26 |
|
Shannon et al. [ |
|
non-repeaters |
8 |
|
Farah et al. [ |
|
non-repeaters |
2 |
|
Parent et al. [ |
|
non-repeaters |
5 |
|
CHIME/FRB Collaboration et al. [ |
|
non-repeaters |
0.36 |
|
this work |
|
repeaters |
The best-fit parameters of a broken power-law LF for repeating and non-repeating FRBs.
Sample | A |
|
|
|
|
---|---|---|---|---|---|
Repeating FRBs |
|
|
|
|
0.17 |
Non-repeating FRBs |
|
|
|
|
3.17 |
Appendix A
The appendix
Extended data.
TNS Name | DM |
z | ||||||
---|---|---|---|---|---|---|---|---|
FRBCAT sample | ||||||||
FRB 20010125A | 1372.5 | 790.30 | 110.00 | 680.30 | 0.54 | 0.57 | 3.42 | 8.91 |
FRB 20010305A | 1374 | 350.00 | 36.00 | 314.00 | 4.20 | 0.30 | 1.60 | 1.62 |
FRB 20010312A | 1374 | 1187.00 | 51.00 | 1136.00 | 0.25 | 1.40 | 10.29 | 3.25 |
FRB 20010621A | 1374 | 745.00 | 523.00 | 225.00 | 0.53 | 0.19 | 0.96 | 7.50 |
FRB 20010724A | 1374 | 375.00 | 44.58 | 330.42 | 30.00 | 0.28 | 1.48 | 9.94 |
FRB 20090625A | 1352 | 899.55 | 31.69 | 867.86 | 1.15 | 0.72 | 4.54 | 3.20 |
FRB 20110214A | 1352 | 168.90 | 31.10 | 137.80 | 27.00 | 0.14 | 0.68 | 1.95 |
FRB 20110220A | 1352 | 944.38 | 34.77 | 909.61 | 1.30 | 0.76 | 4.85 | 4.09 |
FRB 20110523A | 800 | 623.30 | 43.52 | 579.78 | 0.60 | 0.48 | 2.78 | 3.89 |
FRB 20110626A | 1352 | 723.00 | 47.46 | 675.54 | 0.63 | 0.56 | 3.34 | 9.83 |
FRB 20110703A | 1352 | 1103.60 | 32.33 | 1071.27 | 0.50 | 0.89 | 5.88 | 2.27 |
FRB 20120127A | 1352 | 553.30 | 31.82 | 521.48 | 0.62 | 0.43 | 2.44 | 5.29 |
FRB 20121002A | 1352 | 1629.18 | 74.27 | 1554.91 | 0.76 | 1.30 | 9.39 | 8.21 |
FRB 20121029A | 111 | 732.00 | 71.00 | 661.00 | 0.34 | 0.55 | 3.27 | 4.18 |
FRB 20130626A | 1352 | 952.40 | 66.87 | 885.53 | 0.74 | 0.74 | 4.69 | 2.19 |
FRB 20130628A | 1352 | 469.88 | 52.58 | 417.30 | 1.91 | 0.35 | 1.91 | 1.02 |
FRB 20130729A | 1352 | 861.00 | 31.00 | 830.00 | 0.22 | 0.69 | 4.31 | 5.54 |
FRB 20131030A | 111 | 203.00 | 64.40 | 138.60 | 0.24 | 0.12 | 0.58 | 1.03 |
FRB 20131104A | 1352 | 779.00 | 71.10 | 707.90 | 1.16 | 0.59 | 3.56 | 2.04 |
FRB 20140212A | 111 | 910.00 | 49.80 | 860.20 | 0.26 | 0.72 | 4.54 | 5.93 |
FRB 20140514A | 1352 | 562.70 | 34.90 | 527.80 | 0.47 | 0.44 | 2.51 | 4.24 |
FRB 20141113A | 1375 | 400.30 | 188.00 | 212.30 | 0.04 | 0.15 | 0.74 | 3.32 |
FRB 20141216A | 111 | 545.00 | 69.50 | 475.50 | 0.23 | 0.40 | 2.24 | 1.37 |
FRB 20150215A | 1352 | 1105.60 | 427.20 | 678.40 | 0.70 | 0.57 | 3.42 | 1.14 |
FRB 20150418A | 1352 | 776.20 | 188.50 | 587.70 | 2.20 | 0.49 | 2.85 | 2.53 |
FRB 20150610A | 1352 | 1593.90 | 122.00 | 1471.90 | 0.70 | 1.20 | 8.51 | 6.30 |
FRB 20150807A | 1352 | 266.50 | 36.90 | 229.60 | 128.00 | 0.19 | 0.96 | 1.78 |
FRB 20151018A | 111 | 570.00 | 275.00 | 295.00 | 1.40 | 0.24 | 1.24 | 2.67 |
FRB 20151125A | 2.5 | 273.00 | 50.20 | 222.80 | 0.54 | 0.19 | 0.96 | 1.39 |
FRB 20151206A | 1352 | 1909.80 | 160.00 | 1749.80 | 0.30 | 1.50 | 11.20 | 4.48 |
FRB 20151230A | 1352 | 960.40 | 38.00 | 922.40 | 0.42 | 0.80 | 5.16 | 1.49 |
FRB 20160102A | 1352 | 2596.10 | 13.00 | 2583.10 | 0.50 | 2.10 | 16.91 | 1.59 |
FRB 20160206A | 111 | 1262.00 | 69.10 | 1192.90 | 0.26 | 0.99 | 6.71 | 1.24 |
FRB 20160317A | 843 | 1165.00 | 319.60 | 845.40 | 3.00 | 0.70 | 4.38 | 4.87 |
FRB 20160410A | 843 | 278.00 | 57.70 | 220.30 | 7.00 | 0.18 | 0.90 | 5.41 |
FRB 20160608A | 843 | 682.00 | 238.30 | 443.70 | 4.30 | 0.37 | 2.04 | 1.63 |
FRB 20160920A | 111 | 1767.00 | 250.00 | 1517.00 | 0.22 | 1.20 | 8.51 | 1.63 |
FRB 20161202A | 111 | 291.00 | 69.80 | 221.20 | 0.29 | 0.18 | 0.90 | 2.95 |
FRB 20170107A | 1320 | 609.50 | 35.00 | 574.50 | 24.10 | 0.48 | 2.78 | 2.58 |
FRB 20170416A | 1320 | 523.20 | 40.00 | 483.20 | 19.40 | 0.40 | 2.24 | 1.37 |
FRB 20170428A | 1320 | 991.70 | 40.00 | 951.70 | 7.70 | 0.79 | 5.08 | 2.59 |
FRB 20170606A | 111 | 247.00 | 250.00 | (3.00) | 0.54 | 0.06 | 0.26 | 4.87 |
FRB 20170707A | 1297 | 235.20 | 36.00 | 199.20 | 14.80 | 0.17 | 0.84 | 1.56 |
FRB 20170712A | 1297 | 312.79 | 38.00 | 274.79 | 37.80 | 0.23 | 1.18 | 7.66 |
FRB 20170827A | 835 | 176.80 | 37.00 | 139.80 | 60.00 | 0.12 | 0.58 | 1.93 |
FRB 20170906A | 1297 | 390.30 | 39.00 | 351.30 | 29.60 | 0.29 | 1.54 | 1.00 |
FRB 20170922A | 835 | 1111.00 | 45.00 | 1066.00 | 5.19 | 1.20 | 8.51 | 2.88 |
FRB 20171003A | 1297 | 463.20 | 40.00 | 423.20 | 40.50 | 0.35 | 1.91 | 2.08 |
FRB 20171004A | 1297 | 304.00 | 38.00 | 266.00 | 22.00 | 0.22 | 1.13 | 4.05 |
FRB 20171019A | 1297 | 114.10 | 38.00 | 76.10 | 117.60 | 0.06 | 0.28 | 1.38 |
FRB 20171020A | 1297 | 618.50 | 36.00 | 582.50 | 19.60 | 0.49 | 2.85 | 2.16 |
FRB 20171116A | 1352 | 1457.40 | 13.00 | 1444.40 | 1.48 | 1.57 | 11.85 | 2.45 |
FRB 20171209A | 1297 | 158.60 | 36.00 | 122.60 | 88.60 | 0.10 | 0.48 | 3.01 |
FRB 20171213A | 1297 | 203.10 | 37.00 | 166.10 | 21.00 | 0.14 | 0.68 | 1.45 |
FRB 20171216A | 1297 | 715.70 | 38.00 | 677.70 | 128.10 | 0.56 | 3.34 | 1.92 |
FRB 20180110A | 1297 | 402.70 | 36.00 | 366.70 | 40.70 | 0.31 | 1.66 | 1.60 |
FRB 20180119A | 1297 | 441.40 | 32.00 | 409.40 | 17.50 | 0.34 | 1.85 | 8.44 |
FRB 20180128B | 1297 | 495.90 | 40.00 | 455.90 | 28.70 | 0.38 | 2.11 | 1.78 |
FRB 20180130A | 1297 | 343.50 | 39.00 | 304.50 | 23.10 | 0.25 | 1.30 | 5.62 |
FRB 20180131A | 1297 | 657.70 | 40.00 | 617.70 | 22.20 | 0.51 | 2.99 | 2.68 |
FRB 20180212A | 1297 | 167.50 | 33.00 | 134.50 | 53.00 | 0.11 | 0.53 | 2.20 |
FRB 20180309A | 1352 | 263.42 | 44.69 | 218.73 | 27.60 | 0.19 | 0.96 | 3.84 |
FRB 20180311A | 1352 | 1570.90 | 45.20 | 1530.40 | 0.20 | 2.00 | 15.94 | 5.70 |
FRB 20180315A | 1297 | 479.00 | 36.00 | 443.00 | 23.30 | 0.37 | 2.04 | 1.36 |
FRB 20180321A | 111 | 594.00 | 70.00 | 524.00 | 0.54 | 0.44 | 2.51 | 3.99 |
FRB 20180324A | 1297 | 431.00 | 70.00 | 361.00 | 16.50 | 0.30 | 1.60 | 6.02 |
FRB 20180417A | 1272.5 | 474.80 | 26.15 | 448.65 | 21.80 | 0.37 | 2.04 | 1.25 |
FRB 20180430A | 1297 | 264.10 | 165.44 | 98.66 | 147.50 | 0.08 | 0.38 | 3.14 |
FRB 20180515A | 1320 | 355.20 | 33.00 | 322.20 | 24.20 | 0.20 | 1.01 | 3.68 |
FRB 20180525A | 1297 | 388.10 | 31.00 | 357.10 | 78.90 | 0.30 | 1.60 | 2.88 |
FRB 20180528A | 835 | 899.30 | 69.00 | 830.30 | 15.75 | 0.90 | 5.97 | 4.52 |
FRB 20180714A | 1352 | 1467.92 | 257.00 | 1212.87 | 5.00 | 1.60 | 12.12 | 8.65 |
FRB 20180725A | 400 | 715.98 | 71.00 | 644.98 | 38.71 | 0.54 | 3.20 | 1.64 |
FRB 20180727A | 600 | 642.07 | 21.00 | 621.07 | 17.95 | 0.52 | 3.06 | 1.05 |
FRB 20180729B | 600 | 317.37 | 95.00 | 222.37 | 112.50 | 0.19 | 0.96 | 6.96 |
FRB 20180729A | 600 | 109.61 | 31.00 | 78.61 | 283.33 | 0.07 | 0.33 | 2.11 |
FRB 20180730A | 600 | 849.05 | 57.00 | 792.05 | 119.05 | 0.66 | 4.08 | 1.20 |
FRB 20180801A | 600 | 656.20 | 90.00 | 566.20 | 54.90 | 0.47 | 2.71 | 2.55 |
FRB 20180806A | 600 | 739.98 | 41.00 | 698.98 | 34.78 | 0.58 | 3.49 | 2.61 |
FRB 20180810A | 600 | 414.95 | 104.00 | 310.95 | 40.74 | 0.26 | 1.36 | 5.00 |
FRB 20180810B | 600 | 169.13 | 47.00 | 122.13 | 60.71 | 0.10 | 0.48 | 9.54 |
FRB 20180812A | 600 | 802.57 | 83.00 | 719.57 | 14.40 | 0.60 | 3.63 | 1.17 |
FRB 20180814B | 600 | 238.32 | 41.00 | 197.32 | 138.89 | 0.16 | 0.79 | 5.92 |
FRB 20180817A | 600 | 1006.84 | 28.00 | 978.84 | 75.68 | 0.82 | 5.32 | 1.26 |
FRB 20180924B | 1320 | 361.42 | 40.50 | 320.92 | 12.30 | 0.34 | 1.85 | 6.04 |
FRB 20181016A | 835 | 1982.80 | 90.00 | 1892.80 | 10.19 | 2.20 | 17.90 | 2.21 |
FRB 20181017C | 835 | 239.97 | 38.00 | 201.97 | 161.00 | 0.20 | 1.01 | 1.55 |
FRB 20181112A | 1272.5 | 589.27 | 102.00 | 487.27 | 12.38 | 0.41 | 2.31 | 8.93 |
FRB 20181123B | 1250 | 1812.00 | 149.50 | 1662.50 | 0.07 | 1.39 | 10.20 | 7.56 |
FRB 20181228D | 835 | 354.20 | 58.00 | 296.20 | 19.23 | 0.30 | 1.60 | 4.51 |
FRB 20190102C | 1320 | 363.60 | 57.30 | 306.30 | 8.24 | 0.26 | 1.36 | 2.23 |
FRB 20190523A | 1411 | 760.80 | 37.00 | 723.80 | 666.67 | 0.60 | 3.63 | 1.27 |
FRB 20190608B | 1320 | 338.70 | 37.20 | 301.50 | 4.33 | 0.25 | 1.30 | 1.07 |
FRB 20190611B | 1320 | 321.40 | 57.83 | 263.57 | 5.00 | 0.22 | 1.13 | 9.36 |
FRB 20191108A | 1370 | 588.10 | 52.00 | 536.10 | 27.00 | 0.52 | 3.06 | 3.60 |
FRB 20190614D | 1400 | 959.20 | 83.50 | 875.70 | 0.12 | 0.73 | 4.61 | 3.68 |
FRB 20200125A | 350 | 179.47 | 25.00 | 154.47 | 0.37 | 0.17 | 0.84 | 1.04 |
CHIME sample | ||||||||
FRB20180725A | 600 | 715.81 | 71.61 | 644.20 | 1.70 | 0.54 | 3.18 | 1.07 |
FRB20180727A | 600 | 642.13 | 21.23 | 620.90 | 0.58 | 0.52 | 3.04 | 3.35 |
FRB20180729A | 600 | 109.59 | 30.79 | 78.80 | 11.70 | 0.07 | 0.30 | 7.65 |
FRB20180729B | 600 | 317.22 | 94.02 | 223.20 | 0.92 | 0.19 | 0.93 | 5.43 |
FRB20180730A | 600 | 848.90 | 59.20 | 789.70 | 5.20 | 0.66 | 4.07 | 5.22 |
FRB20180801A | 600 | 655.73 | 90.13 | 565.60 | 1.11 | 0.47 | 2.72 | 5.18 |
FRB20180806A | 600 | 739.95 | 40.65 | 699.30 | 1.90 | 0.58 | 3.51 | 1.44 |
FRB20180810A | 600 | 414.88 | 104.68 | 310.20 | 1.10 | 0.26 | 1.35 | 1.33 |
FRB20180810B | 600 | 169.14 | 45.84 | 123.30 | 5.20 | 0.10 | 0.49 | 8.65 |
FRB20180812A | 600 | 802.45 | 80.35 | 722.10 | 0.93 | 0.60 | 3.65 | 7.59 |
FRB20180814B | 600 | 238.35 | 41.15 | 197.20 | 3.40 | 0.16 | 0.81 | 1.54 |
FRB20180817A | 600 | 1006.77 | 27.67 | 979.10 | 2.40 | 0.82 | 5.29 | 3.95 |
FRB20180904A | 600 | 361.14 | 55.44 | 305.70 | 3.80 | 0.25 | 1.33 | 4.46 |
FRB20180906A | 600 | 383.46 | 43.46 | 340.00 | 1.60 | 0.28 | 1.50 | 2.38 |
FRB20180906B | 600 | 3038.06 | 31.36 | 3006.70 | 0.36 | 2.51 | 20.96 | 7.48 |
FRB20180907A | 600 | 877.24 | 92.04 | 785.20 | 0.87 | 0.65 | 4.04 | 8.61 |
FRB20180907B | 600 | 658.19 | 38.09 | 620.10 | 1.08 | 0.52 | 3.04 | 6.22 |
FRB20180907C | 600 | 638.20 | 91.40 | 546.80 | 1.11 | 0.46 | 2.61 | 4.80 |
FRB20180907D | 600 | 1447.10 | 56.00 | 1391.10 | 0.89 | 1.16 | 8.15 | 3.28 |
FRB20180907E | 600 | 383.36 | 30.46 | 352.90 | 0.73 | 0.29 | 1.57 | 1.18 |
FRB20180909A | 600 | 408.65 | 49.85 | 358.80 | 0.33 | 0.30 | 1.60 | 5.53 |
FRB20180910A | 600 | 684.41 | 58.11 | 626.30 | 6.50 | 0.52 | 3.07 | 3.83 |
FRB20180911A | 600 | 221.25 | 56.55 | 164.70 | 1.60 | 0.14 | 0.67 | 4.92 |
FRB20180915A | 600 | 371.03 | 171.93 | 199.10 | 2.30 | 0.17 | 0.82 | 1.06 |
FRB20180915B | 600 | 177.13 | 22.43 | 154.70 | 0.99 | 0.13 | 0.62 | 2.66 |
FRB20180916A | 600 | 296.03 | 78.43 | 217.60 | 2.40 | 0.18 | 0.91 | 1.34 |
FRB20180916C | 600 | 2252.87 | 73.87 | 2179.00 | 0.39 | 1.82 | 14.16 | 3.98 |
FRB20180917B | 600 | 857.04 | 43.14 | 813.90 | 1.03 | 0.68 | 4.22 | 1.11 |
FRB20180918A | 600 | 1453.99 | 79.99 | 1374.00 | 1.45 | 1.15 | 8.03 | 5.20 |
FRB20180919B | 600 | 560.22 | 32.82 | 527.40 | 2.56 | 0.44 | 2.50 | 1.02 |
FRB20180920A | 600 | 555.66 | 160.76 | 394.90 | 0.86 | 0.33 | 1.78 | 1.78 |
FRB20180920B | 600 | 463.40 | 33.20 | 430.20 | 0.35 | 0.36 | 1.97 | 8.80 |
FRB20180921A | 600 | 394.37 | 35.17 | 359.20 | 0.92 | 0.30 | 1.60 | 1.54 |
FRB20180922A | 600 | 555.69 | 141.29 | 414.40 | 2.60 | 0.35 | 1.88 | 6.01 |
FRB20180923A | 600 | 219.44 | 100.04 | 119.40 | 0.76 | 0.10 | 0.47 | 1.18 |
FRB20180923C | 600 | 173.98 | 29.08 | 144.90 | 0.89 | 0.12 | 0.58 | 2.08 |
FRB20180923D | 600 | 329.40 | 30.70 | 298.70 | 2.40 | 0.25 | 1.29 | 2.68 |
FRB20180924A | 600 | 1116.55 | 69.25 | 1047.30 | 1.30 | 0.87 | 5.74 | 2.50 |
FRB20180925A | 600 | 237.74 | 70.64 | 167.10 | 0.99 | 0.14 | 0.68 | 3.14 |
FRB20180925B | 600 | 667.87 | 39.67 | 628.20 | 0.76 | 0.52 | 3.08 | 4.51 |
FRB20180928A | 600 | 252.77 | 158.07 | 94.70 | 1.34 | 0.08 | 0.37 | 1.28 |
FRB20181012B | 600 | 715.19 | 33.49 | 681.70 | 0.49 | 0.57 | 3.40 | 3.51 |
FRB20181013A | 600 | 309.31 | 48.11 | 261.20 | 2.81 | 0.22 | 1.11 | 2.34 |
FRB20181013B | 600 | 277.51 | 85.81 | 191.70 | 0.56 | 0.16 | 0.79 | 2.38 |
FRB20181013C | 600 | 1005.77 | 38.57 | 967.20 | 0.44 | 0.81 | 5.21 | 7.04 |
FRB20181013E | 600 | 345.30 | 80.80 | 264.50 | 0.62 | 0.22 | 1.13 | 5.30 |
FRB20181014A | 600 | 1314.89 | 186.69 | 1128.20 | 0.99 | 0.94 | 6.30 | 2.26 |
FRB20181014B | 600 | 887.97 | 102.57 | 785.40 | 0.65 | 0.65 | 4.04 | 6.44 |
FRB20181014C | 600 | 752.17 | 59.87 | 692.30 | 0.57 | 0.58 | 3.47 | 4.22 |
FRB20181014D | 600 | 377.13 | 30.03 | 347.10 | 8.40 | 0.29 | 1.54 | 1.31 |
FRB20181015A | 600 | 568.82 | 46.52 | 522.30 | 1.51 | 0.44 | 2.47 | 5.88 |
FRB20181017B | 600 | 307.37 | 43.67 | 263.70 | 1.06 | 0.22 | 1.12 | 9.00 |
FRB20181018A | 600 | 1129.45 | 120.95 | 1008.50 | 0.49 | 0.84 | 5.48 | 8.63 |
FRB20181018B | 600 | 293.87 | 113.17 | 180.70 | 5.10 | 0.15 | 0.74 | 1.91 |
FRB20181018C | 600 | 411.19 | 146.19 | 265.00 | 2.40 | 0.22 | 1.13 | 2.06 |
FRB20181019B | 600 | 725.18 | 159.78 | 565.40 | 0.72 | 0.47 | 2.72 | 3.36 |
FRB20181019C | 600 | 501.64 | 39.24 | 462.40 | 1.16 | 0.39 | 2.14 | 3.43 |
FRB20181020A | 600 | 1112.47 | 72.17 | 1040.30 | 0.80 | 0.87 | 5.70 | 1.51 |
FRB20181022C | 600 | 528.47 | 49.87 | 478.60 | 0.91 | 0.40 | 2.23 | 2.91 |
FRB20181022D | 600 | 514.33 | 20.13 | 494.20 | 2.90 | 0.41 | 2.32 | 9.97 |
FRB20181022E | 600 | 285.99 | 21.79 | 264.20 | 0.69 | 0.22 | 1.13 | 5.88 |
FRB20181025A | 600 | 592.56 | 61.66 | 530.90 | 1.52 | 0.44 | 2.52 | 6.14 |
FRB20181027A | 600 | 727.74 | 64.04 | 663.70 | 4.90 | 0.55 | 3.29 | 3.30 |
FRB20181030C | 600 | 668.76 | 73.06 | 595.70 | 1.60 | 0.50 | 2.89 | 8.41 |
FRB20181030D | 600 | 289.44 | 123.54 | 165.90 | 2.74 | 0.14 | 0.67 | 8.55 |
FRB20181030E | 600 | 159.69 | 49.89 | 109.80 | 2.00 | 0.09 | 0.43 | 2.61 |
FRB20181101A | 600 | 1472.68 | 144.88 | 1327.80 | 0.50 | 1.11 | 7.70 | 1.66 |
FRB20181102A | 600 | 414.46 | 155.66 | 258.80 | 1.48 | 0.22 | 1.10 | 1.21 |
FRB20181104C | 600 | 580.82 | 105.32 | 475.50 | 9.70 | 0.40 | 2.21 | 3.05 |
FRB20181115A | 600 | 981.61 | 40.01 | 941.60 | 0.44 | 0.78 | 5.04 | 6.62 |
FRB20181116A | 600 | 355.43 | 37.13 | 318.30 | 4.00 | 0.27 | 1.39 | 5.13 |
FRB20181116B | 600 | 409.88 | 36.38 | 373.50 | 0.74 | 0.31 | 1.67 | 1.36 |
FRB20181117A | 600 | 959.28 | 38.08 | 921.20 | 0.61 | 0.77 | 4.91 | 8.72 |
FRB20181117B | 600 | 538.20 | 65.00 | 473.20 | 3.60 | 0.39 | 2.20 | 1.12 |
FRB20181117C | 600 | 1773.74 | 66.14 | 1707.60 | 1.57 | 1.42 | 10.50 | 9.24 |
FRB20181118A | 600 | 557.41 | 31.51 | 525.90 | 4.30 | 0.44 | 2.49 | 1.70 |
FRB20181118B | 600 | 422.28 | 53.08 | 369.20 | 0.78 | 0.31 | 1.65 | 1.39 |
FRB20181119B | 600 | 609.10 | 442.30 | 166.80 | 4.50 | 0.14 | 0.68 | 1.42 |
FRB20181119C | 600 | 284.96 | 44.66 | 240.30 | 2.80 | 0.20 | 1.01 | 1.94 |
FRB20181119E | 600 | 1169.77 | 220.27 | 949.50 | 0.70 | 0.79 | 5.09 | 1.07 |
FRB20181122A | 600 | 662.82 | 196.12 | 466.70 | 0.53 | 0.39 | 2.17 | 1.60 |
FRB20181122B | 600 | 225.76 | 54.36 | 171.40 | 14.70 | 0.14 | 0.70 | 4.92 |
FRB20181123A | 600 | 798.72 | 103.82 | 694.90 | 0.99 | 0.58 | 3.48 | 7.40 |
FRB20181124A | 600 | 1108.53 | 34.43 | 1074.10 | 0.66 | 0.90 | 5.93 | 1.34 |
FRB20181124B | 600 | 801.64 | 104.94 | 696.70 | 2.61 | 0.58 | 3.49 | 1.96 |
FRB20181125A | 600 | 272.19 | 37.99 | 234.20 | 0.39 | 0.20 | 0.98 | 2.56 |
FRB20181126A | 600 | 494.22 | 49.62 | 444.60 | 3.50 | 0.37 | 2.05 | 9.47 |
FRB20181127A | 600 | 930.32 | 32.22 | 898.10 | 0.78 | 0.75 | 4.76 | 1.05 |
FRB20181128B | 600 | 456.55 | 33.55 | 423.00 | 0.34 | 0.35 | 1.93 | 8.23 |
FRB20181128C | 600 | 618.35 | 49.15 | 569.20 | 0.39 | 0.47 | 2.74 | 1.85 |
FRB20181128D | 600 | 146.50 | 32.70 | 113.80 | 2.60 | 0.09 | 0.45 | 3.65 |
FRB20181129A | 600 | 385.97 | 86.77 | 299.20 | 1.52 | 0.25 | 1.30 | 1.70 |
FRB20181129B | 600 | 405.91 | 62.11 | 343.80 | 4.00 | 0.29 | 1.52 | 6.09 |
FRB20181129C | 600 | 502.22 | 26.52 | 475.70 | 0.77 | 0.40 | 2.22 | 2.43 |
FRB20181130A | 600 | 220.09 | 95.09 | 125.00 | 0.97 | 0.10 | 0.50 | 1.66 |
FRB20181201A | 600 | 694.36 | 23.96 | 670.40 | 0.40 | 0.56 | 3.33 | 2.75 |
FRB20181201B | 600 | 876.58 | 51.28 | 825.30 | 0.66 | 0.69 | 4.29 | 7.33 |
FRB20181202A | 600 | 667.95 | 38.75 | 629.20 | 2.63 | 0.52 | 3.09 | 1.57 |
FRB20181202B | 600 | 825.88 | 33.68 | 792.20 | 0.99 | 0.66 | 4.08 | 1.00 |
FRB20181202C | 600 | 557.16 | 126.46 | 430.70 | 0.51 | 0.36 | 1.97 | 1.29 |
FRB20181203A | 600 | 635.93 | 46.73 | 589.20 | 1.74 | 0.49 | 2.86 | 8.92 |
FRB20181203B | 600 | 375.39 | 56.69 | 318.70 | 1.45 | 0.27 | 1.39 | 1.87 |
FRB20181203C | 600 | 2444.57 | 37.47 | 2407.10 | 1.05 | 2.01 | 15.99 | 1.34 |
FRB20181208A | 600 | 562.78 | 45.18 | 517.60 | 0.95 | 0.43 | 2.45 | 3.63 |
FRB20181209A | 600 | 328.66 | 65.66 | 263.00 | 2.50 | 0.22 | 1.12 | 2.11 |
FRB20181213A | 600 | 678.67 | 48.57 | 630.10 | 0.88 | 0.53 | 3.09 | 5.26 |
FRB20181213B | 600 | 626.59 | 30.59 | 596.00 | 0.75 | 0.50 | 2.90 | 3.95 |
FRB20181213C | 600 | 380.74 | 30.54 | 350.20 | 0.62 | 0.29 | 1.55 | 9.84 |
FRB20181214A | 600 | 468.15 | 184.25 | 283.90 | 0.16 | 0.24 | 1.22 | 1.56 |
FRB20181214B | 600 | 1120.75 | 42.05 | 1078.70 | 0.41 | 0.90 | 5.96 | 8.43 |
FRB20181214C | 600 | 632.78 | 33.28 | 599.50 | 1.20 | 0.50 | 2.92 | 6.40 |
FRB20181214D | 600 | 1177.32 | 26.02 | 1151.30 | 0.55 | 0.96 | 6.45 | 1.31 |
FRB20181214F | 600 | 2105.76 | 40.26 | 2065.50 | 0.31 | 1.72 | 13.26 | 2.80 |
FRB20181215A | 600 | 412.63 | 128.53 | 284.10 | 0.34 | 0.24 | 1.22 | 3.40 |
FRB20181215B | 600 | 494.01 | 40.61 | 453.40 | 1.90 | 0.38 | 2.09 | 5.37 |
FRB20181216A | 600 | 542.74 | 146.74 | 396.00 | 0.94 | 0.33 | 1.79 | 1.96 |
FRB20181217A | 600 | 1177.17 | 69.77 | 1107.40 | 0.64 | 0.92 | 6.15 | 1.40 |
FRB20181218A | 600 | 1874.41 | 147.21 | 1727.20 | 0.83 | 1.44 | 10.64 | 5.01 |
FRB20181218B | 600 | 753.41 | 169.61 | 583.80 | 0.56 | 0.49 | 2.82 | 2.81 |
FRB20181218C | 600 | 384.15 | 64.35 | 319.80 | 0.25 | 0.27 | 1.40 | 3.24 |
FRB20181219B | 600 | 1952.17 | 37.27 | 1914.90 | 4.60 | 1.60 | 12.08 | 3.51 |
FRB20181219C | 600 | 647.89 | 36.19 | 611.70 | 0.21 | 0.51 | 2.99 | 1.16 |
FRB20181220A | 600 | 209.40 | 125.80 | 83.60 | 1.33 | 0.07 | 0.32 | 9.83 |
FRB20181220B | 600 | 257.80 | 53.60 | 204.20 | 2.90 | 0.17 | 0.85 | 1.41 |
FRB20181221A | 600 | 316.24 | 24.44 | 291.80 | 1.25 | 0.24 | 1.26 | 1.32 |
FRB20181221B | 600 | 1395.02 | 61.92 | 1333.10 | 0.97 | 1.11 | 7.73 | 3.25 |
FRB20181222B | 600 | 619.25 | 148.25 | 471.00 | 0.46 | 0.39 | 2.19 | 1.42 |
FRB20181222C | 600 | 1104.89 | 46.39 | 1058.50 | 0.84 | 0.88 | 5.82 | 1.65 |
FRB20181222D | 600 | 1417.11 | 31.21 | 1385.90 | 0.22 | 1.15 | 8.11 | 8.05 |
FRB20181222E | 600 | 327.98 | 59.88 | 268.10 | 1.12 | 0.22 | 1.15 | 9.86 |
FRB20181223B | 600 | 565.66 | 25.45 | 540.20 | 0.68 | 0.45 | 2.57 | 2.86 |
FRB20181223C | 600 | 112.51 | 19.91 | 92.60 | 1.36 | 0.08 | 0.36 | 1.24 |
FRB20181224A | 600 | 310.21 | 85.01 | 225.20 | 4.30 | 0.19 | 0.94 | 2.59 |
FRB20181224B | 600 | 781.01 | 121.31 | 659.70 | 0.77 | 0.55 | 3.27 | 5.11 |
FRB20181224C | 600 | 596.33 | 55.33 | 541.00 | 0.50 | 0.45 | 2.58 | 2.11 |
FRB20181224D | 600 | 690.20 | 31.40 | 658.80 | 0.54 | 0.55 | 3.27 | 3.57 |
FRB20181224E | 600 | 581.85 | 36.55 | 545.30 | 3.60 | 0.45 | 2.60 | 1.55 |
FRB20181225B | 600 | 299.29 | 58.29 | 241.00 | 1.90 | 0.20 | 1.02 | 1.33 |
FRB20181226B | 600 | 287.04 | 27.74 | 259.30 | 8.90 | 0.22 | 1.10 | 7.28 |
FRB20181226C | 600 | 409.02 | 94.02 | 315.00 | 0.88 | 0.26 | 1.37 | 1.10 |
FRB20181226D | 600 | 385.38 | 64.98 | 320.40 | 1.89 | 0.27 | 1.40 | 2.46 |
FRB20181226E | 600 | 308.76 | 68.86 | 239.90 | 0.48 | 0.20 | 1.01 | 3.31 |
FRB20181227A | 600 | 791.21 | 89.01 | 702.20 | 0.93 | 0.59 | 3.53 | 7.12 |
FRB20181228A | 600 | 748.68 | 34.18 | 714.50 | 1.16 | 0.60 | 3.60 | 9.24 |
FRB20181228B | 600 | 568.65 | 39.95 | 528.70 | 0.40 | 0.44 | 2.51 | 1.60 |
FRB20181228C | 600 | 510.70 | 45.60 | 465.10 | 0.45 | 0.39 | 2.16 | 1.35 |
FRB20181229A | 600 | 955.57 | 42.97 | 912.60 | 1.18 | 0.76 | 4.85 | 1.65 |
FRB20181229B | 600 | 389.05 | 29.35 | 359.70 | 0.42 | 0.30 | 1.60 | 7.07 |
FRB20181230A | 600 | 769.61 | 68.41 | 701.20 | 0.94 | 0.58 | 3.52 | 7.17 |
FRB20181230B | 600 | 1137.36 | 84.96 | 1052.40 | 0.88 | 0.88 | 5.78 | 1.71 |
FRB20181230C | 600 | 1037.19 | 36.89 | 1000.30 | 0.89 | 0.83 | 5.43 | 1.54 |
FRB20181230D | 600 | 223.97 | 40.57 | 183.40 | 1.39 | 0.15 | 0.75 | 5.37 |
FRB20181230E | 600 | 1041.71 | 54.51 | 987.20 | 1.32 | 0.82 | 5.34 | 2.21 |
FRB20181231A | 600 | 1376.73 | 43.03 | 1333.70 | 1.09 | 1.11 | 7.74 | 3.65 |
FRB20181231B | 600 | 197.17 | 46.87 | 150.30 | 0.89 | 0.13 | 0.61 | 2.25 |
FRB20181231C | 600 | 556.09 | 35.49 | 520.60 | 0.68 | 0.43 | 2.46 | 2.63 |
FRB20190101A | 600 | 854.61 | 24.31 | 830.30 | 0.60 | 0.69 | 4.32 | 6.75 |
FRB20190101B | 600 | 1323.91 | 234.01 | 1089.90 | 1.02 | 0.91 | 6.03 | 2.15 |
FRB20190102A | 600 | 699.17 | 43.57 | 655.60 | 1.12 | 0.55 | 3.25 | 7.33 |
FRB20190102B | 600 | 367.16 | 41.06 | 326.10 | 1.71 | 0.27 | 1.43 | 2.32 |
FRB20190103B | 600 | 541.13 | 187.13 | 354.00 | 0.68 | 0.30 | 1.57 | 1.10 |
FRB20190103C | 600 | 1349.13 | 155.53 | 1193.60 | 2.30 | 0.99 | 6.75 | 5.97 |
FRB20190103D | 600 | 1913.55 | 33.25 | 1880.30 | 0.45 | 1.57 | 11.82 | 3.29 |
FRB20190103E | 600 | 736.25 | 45.65 | 690.60 | 0.46 | 0.58 | 3.46 | 3.39 |
FRB20190104A | 600 | 549.43 | 151.53 | 397.90 | 1.45 | 0.33 | 1.80 | 3.06 |
FRB20190104B | 600 | 530.14 | 49.84 | 480.30 | 2.70 | 0.40 | 2.24 | 8.70 |
FRB20190105A | 600 | 383.55 | 46.35 | 337.20 | 0.60 | 0.28 | 1.49 | 8.75 |
FRB20190106A | 600 | 340.06 | 88.86 | 251.20 | 0.27 | 0.21 | 1.06 | 2.06 |
FRB20190106B | 600 | 316.59 | 141.69 | 174.90 | 1.70 | 0.15 | 0.71 | 5.94 |
FRB20190107A | 600 | 849.19 | 39.89 | 809.30 | 0.49 | 0.67 | 4.19 | 5.20 |
FRB20190107B | 600 | 166.09 | 69.99 | 96.10 | 2.80 | 0.08 | 0.38 | 2.76 |
FRB20190109A | 600 | 324.60 | 147.70 | 176.90 | 1.19 | 0.15 | 0.72 | 4.26 |
FRB20190109B | 600 | 175.17 | 68.27 | 106.90 | 1.20 | 0.09 | 0.42 | 1.48 |
FRB20190110A | 600 | 472.75 | 188.55 | 284.20 | 1.54 | 0.24 | 1.22 | 1.54 |
FRB20190110B | 600 | 486.12 | 45.52 | 440.60 | 0.47 | 0.37 | 2.02 | 1.25 |
FRB20190110C | 600 | 221.96 | 35.66 | 186.30 | 0.64 | 0.16 | 0.76 | 2.56 |
FRB20190111A | 600 | 171.97 | 21.47 | 150.50 | 3.60 | 0.13 | 0.61 | 9.13 |
FRB20190111B | 600 | 1336.93 | 65.13 | 1271.80 | 0.32 | 1.06 | 7.30 | 9.61 |
FRB20190112A | 600 | 425.85 | 42.05 | 383.80 | 1.40 | 0.32 | 1.72 | 2.72 |
FRB20190113A | 600 | 428.92 | 178.92 | 250.00 | 1.30 | 0.21 | 1.06 | 9.82 |
FRB20190114A | 600 | 887.39 | 38.09 | 849.30 | 0.55 | 0.71 | 4.44 | 6.52 |
FRB20190115A | 600 | 1021.68 | 186.38 | 835.30 | 0.46 | 0.70 | 4.35 | 5.25 |
FRB20190115B | 600 | 748.29 | 63.79 | 684.50 | 1.45 | 0.57 | 3.42 | 1.05 |
FRB20190116C | 600 | 629.28 | 41.88 | 587.40 | 28.00 | 0.49 | 2.85 | 1.42 |
FRB20190116D | 600 | 1164.03 | 78.53 | 1085.50 | 0.51 | 0.90 | 6.00 | 1.06 |
FRB20190116E | 600 | 1491.00 | 128.40 | 1362.60 | 0.46 | 1.14 | 7.95 | 1.62 |
FRB20190116F | 600 | 316.92 | 46.82 | 270.10 | 0.49 | 0.23 | 1.15 | 4.38 |
FRB20190117C | 600 | 865.90 | 53.30 | 812.60 | 0.42 | 0.68 | 4.21 | 4.50 |
FRB20190117D | 600 | 1178.06 | 22.56 | 1155.50 | 0.78 | 0.96 | 6.48 | 1.88 |
FRB20190118A | 600 | 225.11 | 53.41 | 171.70 | 9.30 | 0.14 | 0.70 | 3.12 |
FRB20190118B | 600 | 670.89 | 50.19 | 620.70 | 0.31 | 0.52 | 3.04 | 1.79 |
FRB20190121A | 600 | 425.35 | 87.35 | 338.00 | 1.70 | 0.28 | 1.49 | 2.49 |
FRB20190122A | 600 | 1231.21 | 64.61 | 1166.60 | 0.33 | 0.97 | 6.56 | 8.06 |
FRB20190122B | 600 | 469.57 | 54.47 | 415.10 | 0.41 | 0.35 | 1.89 | 9.51 |
FRB20190122C | 600 | 689.90 | 24.40 | 665.50 | 4.20 | 0.55 | 3.31 | 2.84 |
FRB20190124A | 600 | 1275.85 | 176.55 | 1099.30 | 0.61 | 0.92 | 6.10 | 1.31 |
FRB20190124B | 600 | 441.38 | 21.58 | 419.80 | 0.97 | 0.35 | 1.91 | 2.31 |
FRB20190124C | 600 | 303.64 | 21.44 | 282.20 | 2.50 | 0.24 | 1.21 | 2.46 |
FRB20190124D | 600 | 340.12 | 45.62 | 294.50 | 0.50 | 0.25 | 1.27 | 5.41 |
FRB20190124E | 600 | 617.79 | 391.99 | 225.80 | 0.64 | 0.19 | 0.95 | 3.87 |
FRB20190124F | 600 | 254.79 | 37.59 | 217.20 | 3.90 | 0.18 | 0.91 | 2.17 |
FRB20190125A | 600 | 564.70 | 60.40 | 504.30 | 0.37 | 0.42 | 2.37 | 1.33 |
FRB20190125B | 600 | 178.24 | 33.24 | 145.00 | 0.83 | 0.12 | 0.58 | 1.94 |
FRB20190127B | 600 | 663.03 | 48.43 | 614.60 | 0.63 | 0.51 | 3.00 | 3.56 |
FRB20190128A | 600 | 696.12 | 43.62 | 652.50 | 0.58 | 0.54 | 3.23 | 3.75 |
FRB20190128B | 600 | 248.23 | 57.23 | 191.00 | 0.81 | 0.16 | 0.79 | 3.42 |
FRB20190128C | 600 | 310.62 | 71.32 | 239.30 | 0.71 | 0.20 | 1.01 | 4.88 |
FRB20190128D | 600 | 430.23 | 232.83 | 197.40 | 1.20 | 0.16 | 0.81 | 5.43 |
FRB20190129A | 600 | 484.76 | 52.06 | 432.70 | 0.49 | 0.36 | 1.98 | 1.25 |
FRB20190130A | 600 | 1367.46 | 37.36 | 1330.10 | 0.47 | 1.11 | 7.71 | 1.56 |
FRB20190130B | 600 | 989.03 | 29.73 | 959.30 | 0.77 | 0.80 | 5.16 | 1.21 |
FRB20190131B | 600 | 1805.73 | 35.63 | 1770.10 | 0.99 | 1.48 | 10.97 | 6.32 |
FRB20190131C | 600 | 507.76 | 32.96 | 474.80 | 0.84 | 0.40 | 2.21 | 2.64 |
FRB20190131D | 600 | 642.12 | 67.52 | 574.60 | 2.90 | 0.48 | 2.77 | 1.40 |
FRB20190131E | 600 | 279.80 | 43.30 | 236.50 | 3.00 | 0.20 | 1.00 | 2.01 |
FRB20190201A | 600 | 242.00 | 62.40 | 179.60 | 2.60 | 0.15 | 0.73 | 9.61 |
FRB20190201B | 600 | 749.18 | 54.18 | 695.00 | 0.81 | 0.58 | 3.48 | 6.06 |
FRB20190202A | 600 | 307.36 | 40.76 | 266.60 | 41.00 | 0.22 | 1.14 | 3.56 |
FRB20190202B | 600 | 464.91 | 70.11 | 394.80 | 1.57 | 0.33 | 1.78 | 3.25 |
FRB20190203A | 600 | 420.57 | 45.87 | 374.70 | 1.21 | 0.31 | 1.68 | 2.23 |
FRB20190203B | 600 | 582.22 | 45.82 | 536.40 | 0.49 | 0.45 | 2.55 | 2.03 |
FRB20190203C | 600 | 370.46 | 29.66 | 340.80 | 1.40 | 0.28 | 1.50 | 2.09 |
FRB20190204A | 600 | 449.64 | 36.14 | 413.50 | 0.24 | 0.34 | 1.88 | 5.52 |
FRB20190204B | 600 | 1464.94 | 45.54 | 1419.40 | 1.35 | 1.18 | 8.36 | 5.22 |
FRB20190205A | 600 | 695.39 | 67.69 | 627.70 | 0.74 | 0.52 | 3.08 | 4.38 |
FRB20190206A | 600 | 188.34 | 41.44 | 146.90 | 1.40 | 0.12 | 0.59 | 3.37 |
FRB20190206B | 600 | 352.52 | 78.52 | 274.00 | 0.95 | 0.23 | 1.17 | 8.77 |
FRB20190206C | 600 | 1043.00 | 38.30 | 1004.70 | 0.56 | 0.84 | 5.46 | 9.78 |
FRB20190208B | 600 | 714.22 | 60.62 | 653.60 | 10.30 | 0.54 | 3.23 | 6.69 |
FRB20190208C | 600 | 238.39 | 49.69 | 188.70 | 1.27 | 0.16 | 0.78 | 5.22 |
FRB20190210B | 600 | 624.19 | 116.49 | 507.70 | 2.60 | 0.42 | 2.39 | 9.50 |
FRB20190210C | 600 | 643.37 | 55.27 | 588.10 | 2.37 | 0.49 | 2.85 | 1.21 |
FRB20190210D | 600 | 359.15 | 141.25 | 217.90 | 1.37 | 0.18 | 0.91 | 7.68 |
FRB20190210E | 600 | 580.58 | 57.88 | 522.70 | 0.69 | 0.44 | 2.48 | 2.69 |
FRB20190211A | 600 | 1188.26 | 103.86 | 1084.40 | 1.47 | 0.90 | 6.00 | 3.06 |
FRB20190211B | 600 | 260.70 | 84.50 | 176.20 | 0.30 | 0.15 | 0.72 | 1.06 |
FRB20190212B | 600 | 600.19 | 41.19 | 559.00 | 1.55 | 0.47 | 2.68 | 7.05 |
FRB20190212C | 600 | 1016.45 | 22.35 | 994.10 | 0.70 | 0.83 | 5.39 | 1.19 |
FRB20190212D | 600 | 1139.77 | 35.37 | 1104.40 | 0.42 | 0.92 | 6.13 | 9.12 |
FRB20190213C | 600 | 357.06 | 175.96 | 181.10 | 0.62 | 0.15 | 0.74 | 2.33 |
FRB20190213D | 600 | 1346.85 | 234.55 | 1112.30 | 1.00 | 0.93 | 6.19 | 2.21 |
FRB20190214A | 600 | 497.68 | 69.78 | 427.90 | 0.46 | 0.36 | 1.96 | 1.14 |
FRB20190214C | 600 | 533.11 | 22.11 | 511.00 | 1.02 | 0.43 | 2.41 | 3.78 |
FRB20190215B | 600 | 274.63 | 136.23 | 138.40 | 2.20 | 0.12 | 0.55 | 4.67 |
FRB20190217A | 600 | 798.11 | 110.71 | 687.40 | 0.29 | 0.57 | 3.44 | 2.11 |
FRB20190217B | 600 | 846.21 | 45.81 | 800.40 | 0.54 | 0.67 | 4.13 | 5.59 |
FRB20190218A | 600 | 1285.13 | 31.43 | 1253.70 | 0.54 | 1.04 | 7.17 | 1.57 |
FRB20190218B | 600 | 547.87 | 81.57 | 466.30 | 0.57 | 0.39 | 2.16 | 1.72 |
FRB20190218C | 600 | 319.32 | 43.72 | 275.60 | 19.00 | 0.23 | 1.18 | 1.78 |
FRB20190219A | 600 | 657.19 | 78.79 | 578.40 | 0.31 | 0.48 | 2.79 | 1.50 |
FRB20190219B | 600 | 1681.11 | 37.71 | 1643.40 | 1.10 | 1.37 | 10.01 | 5.94 |
FRB20190219C | 600 | 806.69 | 124.09 | 682.60 | 0.40 | 0.57 | 3.41 | 2.87 |
FRB20190220A | 600 | 216.12 | 40.92 | 175.20 | 0.34 | 0.15 | 0.71 | 1.19 |
FRB20190221A | 600 | 223.81 | 52.91 | 170.90 | 1.23 | 0.14 | 0.70 | 4.09 |
FRB20190221B | 600 | 393.12 | 165.52 | 227.60 | 0.69 | 0.19 | 0.95 | 4.25 |
FRB20190221C | 600 | 2042.30 | 220.60 | 1821.70 | 0.59 | 1.52 | 11.37 | 4.02 |
FRB20190221D | 600 | 473.79 | 189.59 | 284.20 | 0.65 | 0.24 | 1.22 | 6.50 |
FRB20190222B | 600 | 497.62 | 33.22 | 464.40 | 0.40 | 0.39 | 2.15 | 1.19 |
FRB20190222C | 600 | 524.01 | 29.51 | 494.50 | 0.44 | 0.41 | 2.32 | 1.51 |
FRB20190222D | 600 | 895.30 | 115.60 | 779.70 | 0.79 | 0.65 | 4.00 | 7.69 |
FRB20190223A | 600 | 389.24 | 58.14 | 331.10 | 0.47 | 0.28 | 1.45 | 6.58 |
FRB20190223B | 600 | 536.51 | 124.71 | 411.80 | 0.55 | 0.34 | 1.87 | 1.25 |
FRB20190224A | 600 | 818.40 | 65.50 | 752.90 | 0.63 | 0.63 | 3.84 | 5.66 |
FRB20190224B | 600 | 839.37 | 51.37 | 788.00 | 2.00 | 0.66 | 4.06 | 2.00 |
FRB20190224C | 600 | 497.40 | 59.90 | 437.50 | 1.37 | 0.36 | 2.01 | 3.58 |
FRB20190224D | 600 | 752.95 | 56.25 | 696.70 | 2.75 | 0.58 | 3.49 | 2.07 |
FRB20190224E | 600 | 435.86 | 33.06 | 402.80 | 2.03 | 0.34 | 1.82 | 4.40 |
FRB20190226A | 600 | 601.57 | 91.27 | 510.30 | 1.45 | 0.43 | 2.41 | 5.36 |
FRB20190226B | 600 | 631.60 | 50.70 | 580.90 | 0.38 | 0.48 | 2.81 | 1.89 |
FRB20190226C | 600 | 827.77 | 44.47 | 783.30 | 0.39 | 0.65 | 4.03 | 3.84 |
FRB20190227A | 600 | 394.04 | 63.44 | 330.60 | 3.58 | 0.28 | 1.45 | 5.00 |
FRB20190227B | 600 | 331.23 | 23.93 | 307.30 | 0.48 | 0.26 | 1.34 | 5.70 |
FRB20190228A | 600 | 419.08 | 20.18 | 398.90 | 1.79 | 0.33 | 1.80 | 3.80 |
FRB20190228B | 600 | 1115.25 | 71.35 | 1043.90 | 4.80 | 0.87 | 5.72 | 9.16 |
FRB20190301B | 600 | 621.33 | 82.83 | 538.50 | 0.40 | 0.45 | 2.57 | 1.67 |
FRB20190301C | 600 | 802.91 | 20.51 | 782.40 | 0.34 | 0.65 | 4.02 | 3.34 |
FRB20190301D | 600 | 1160.69 | 53.09 | 1107.60 | 0.39 | 0.92 | 6.15 | 8.53 |
FRB20190302A | 600 | 1034.24 | 220.74 | 813.50 | 0.56 | 0.68 | 4.22 | 6.01 |
FRB20190303B | 600 | 193.51 | 47.11 | 146.40 | 9.40 | 0.12 | 0.59 | 2.25 |
FRB20190303C | 600 | 1089.66 | 23.06 | 1066.60 | 0.80 | 0.89 | 5.87 | 1.60 |
FRB20190303D | 600 | 711.15 | 37.05 | 674.10 | 0.59 | 0.56 | 3.36 | 4.11 |
FRB20190304A | 600 | 483.73 | 49.83 | 433.90 | 0.71 | 0.36 | 1.99 | 1.82 |
FRB20190304B | 600 | 470.01 | 22.61 | 447.40 | 0.67 | 0.37 | 2.06 | 1.84 |
FRB20190304C | 600 | 564.99 | 22.09 | 542.90 | 0.53 | 0.45 | 2.59 | 2.25 |
FRB20190307A | 600 | 355.34 | 58.04 | 297.30 | ... | 0.25 | 1.29 | ... |
FRB20190307B | 600 | 294.00 | 54.90 | 239.10 | ... | 0.20 | 1.01 | ... |
FRB20190308B | 600 | 180.18 | 68.68 | 111.50 | 1.11 | 0.09 | 0.44 | 1.49 |
FRB20190308C | 600 | 500.52 | 23.12 | 477.40 | 0.47 | 0.40 | 2.22 | 1.49 |
FRB20190309A | 600 | 356.90 | 58.60 | 298.30 | 0.39 | 0.25 | 1.29 | 4.34 |
FRB20190313B | 600 | 1191.25 | 59.85 | 1131.40 | 0.67 | 0.94 | 6.32 | 1.54 |
FRB20190316A | 600 | 515.93 | 38.93 | 477.00 | 1.31 | 0.40 | 2.22 | 4.16 |
FRB20190317A | 600 | 1157.26 | 137.96 | 1019.30 | 0.54 | 0.85 | 5.56 | 9.75 |
FRB20190317B | 600 | 424.31 | 80.61 | 343.70 | 0.65 | 0.29 | 1.52 | 9.89 |
FRB20190317C | 600 | 598.26 | 53.56 | 544.70 | 0.43 | 0.45 | 2.60 | 1.84 |
FRB20190317E | 600 | 800.88 | 134.28 | 666.60 | 2.17 | 0.56 | 3.31 | 1.47 |
FRB20190317F | 600 | 1118.11 | 33.31 | 1084.80 | 1.65 | 0.90 | 6.00 | 3.44 |
FRB20190318A | 600 | 419.27 | 85.37 | 333.90 | 1.55 | 0.28 | 1.47 | 2.21 |
FRB20190319A | 600 | 2039.94 | 107.64 | 1932.30 | 2.78 | 1.61 | 12.22 | 2.16 |
FRB20190320A | 600 | 614.15 | 143.95 | 470.20 | 0.94 | 0.39 | 2.19 | 2.89 |
FRB20190320B | 600 | 489.49 | 37.69 | 451.80 | 0.73 | 0.38 | 2.09 | 2.05 |
FRB20190320C | 600 | 368.79 | 47.09 | 321.70 | 1.24 | 0.27 | 1.41 | 1.63 |
FRB20190320D | 600 | 1141.35 | 43.85 | 1097.50 | 0.49 | 0.91 | 6.08 | 1.05 |
FRB20190320E | 600 | 299.14 | 55.84 | 243.30 | 4.40 | 0.20 | 1.03 | 3.13 |
FRB20190322A | 600 | 1060.12 | 63.62 | 996.50 | 0.64 | 0.83 | 5.40 | 1.10 |
FRB20190322B | 600 | 576.98 | 46.98 | 530.00 | 0.61 | 0.44 | 2.52 | 2.46 |
FRB20190322C | 600 | 1192.08 | 65.78 | 1126.30 | 4.10 | 0.94 | 6.28 | 9.32 |
FRB20190323A | 600 | 857.50 | 72.80 | 784.70 | 0.67 | 0.65 | 4.04 | 6.62 |
FRB20190323B | 600 | 789.56 | 40.26 | 749.30 | 6.94 | 0.62 | 3.81 | 6.17 |
FRB20190323C | 600 | 381.12 | 23.62 | 357.50 | 0.56 | 0.30 | 1.59 | 9.30 |
FRB20190323D | 600 | 763.65 | 162.35 | 601.30 | 0.37 | 0.50 | 2.93 | 1.99 |
FRB20190325A | 600 | 359.29 | 50.99 | 308.30 | 1.31 | 0.26 | 1.34 | 1.57 |
FRB20190325B | 600 | 1733.92 | 19.82 | 1714.10 | 0.70 | 1.43 | 10.54 | 4.16 |
FRB20190325C | 600 | 797.83 | 188.43 | 609.40 | 0.63 | 0.51 | 2.97 | 3.49 |
FRB20190326A | 600 | 283.31 | 40.71 | 242.60 | 1.02 | 0.20 | 1.02 | 7.22 |
FRB20190327A | 600 | 346.57 | 88.77 | 257.80 | 2.43 | 0.21 | 1.10 | 1.96 |
FRB20190328A | 600 | 1303.58 | 51.78 | 1251.80 | 0.43 | 1.04 | 7.16 | 1.25 |
FRB20190328B | 600 | 565.00 | 50.10 | 514.90 | 0.72 | 0.43 | 2.43 | 2.72 |
FRB20190328C | 600 | 472.86 | 64.66 | 408.20 | 4.70 | 0.34 | 1.85 | 1.05 |
FRB20190329A | 600 | 188.61 | 87.81 | 100.80 | 0.52 | 0.08 | 0.40 | 5.67 |
FRB20190329B | 600 | 406.05 | 65.95 | 340.10 | ... | 0.28 | 1.50 | ... |
FRB20190329C | 600 | 1256.36 | 60.36 | 1196.00 | ... | 1.00 | 6.76 | ... |
FRB20190330A | 600 | 508.97 | 24.87 | 484.10 | 0.37 | 0.40 | 2.26 | 1.21 |
FRB20190330B | 600 | 668.09 | 48.89 | 619.20 | 2.79 | 0.52 | 3.03 | 1.60 |
FRB20190401A | 600 | 783.22 | 42.42 | 740.80 | 1.05 | 0.62 | 3.76 | 9.09 |
FRB20190402A | 600 | 1291.69 | 26.39 | 1265.30 | 0.30 | 1.05 | 7.25 | 8.91 |
FRB20190403A | 600 | 518.83 | 54.23 | 464.60 | 1.12 | 0.39 | 2.15 | 3.35 |
FRB20190403B | 600 | 292.47 | 54.07 | 238.40 | 2.70 | 0.20 | 1.00 | 1.84 |
FRB20190403C | 600 | 935.01 | 38.91 | 896.10 | 0.37 | 0.75 | 4.74 | 4.96 |
FRB20190403D | 600 | 613.46 | 62.96 | 550.50 | 0.65 | 0.46 | 2.63 | 2.85 |
FRB20190403E | 600 | 226.20 | 49.90 | 176.30 | 3.90 | 0.15 | 0.72 | 1.39 |
FRB20190403F | 600 | 664.18 | 67.38 | 596.80 | 0.58 | 0.50 | 2.90 | 3.06 |
FRB20190403G | 600 | 865.31 | 165.31 | 700.00 | 0.75 | 0.58 | 3.51 | 5.70 |
FRB20190404A | 600 | 1353.90 | 40.30 | 1313.60 | 1.17 | 1.09 | 7.59 | 3.79 |
FRB20190404B | 600 | 489.42 | 45.02 | 444.40 | 8.60 | 0.37 | 2.05 | 2.33 |
FRB20190405A | 600 | 424.88 | 47.28 | 377.60 | 0.65 | 0.31 | 1.69 | 1.22 |
FRB20190405B | 600 | 1113.22 | 53.92 | 1059.30 | 3.40 | 0.88 | 5.83 | 6.71 |
FRB20190408A | 600 | 863.38 | 45.98 | 817.40 | 0.64 | 0.68 | 4.24 | 6.95 |
FRB20190409A | 600 | 1791.89 | 84.39 | 1707.50 | 3.00 | 1.42 | 10.49 | 1.77 |
FRB20190409B | 600 | 285.63 | 47.83 | 237.80 | 0.39 | 0.20 | 1.00 | 2.64 |
FRB20190409C | 600 | 674.63 | 43.03 | 631.60 | 1.04 | 0.53 | 3.10 | 6.25 |
FRB20190409D | 600 | 1300.12 | 54.72 | 1245.40 | 0.59 | 1.04 | 7.11 | 1.69 |
FRB20190410A | 600 | 284.02 | 128.52 | 155.50 | 1.59 | 0.13 | 0.63 | 4.32 |
FRB20190410B | 600 | 642.17 | 78.37 | 563.80 | 0.22 | 0.47 | 2.71 | 1.02 |
FRB20190411A | 600 | 460.56 | 60.76 | 399.80 | 1.24 | 0.33 | 1.81 | 2.64 |
FRB20190411B | 600 | 1229.58 | 35.28 | 1194.30 | 0.89 | 1.00 | 6.75 | 2.31 |
FRB20190411C | 600 | 233.66 | 38.86 | 194.80 | 3.19 | 0.16 | 0.80 | 1.40 |
FRB20190412A | 600 | 364.73 | 37.53 | 327.20 | 1.77 | 0.27 | 1.44 | 2.42 |
FRB20190412B | 600 | 375.75 | 264.85 | 110.90 | 0.68 | 0.09 | 0.44 | 9.06 |
FRB20190414A | 600 | 811.98 | 20.18 | 791.80 | 0.44 | 0.66 | 4.08 | 4.44 |
FRB20190414B | 600 | 506.49 | 37.79 | 468.70 | 0.49 | 0.39 | 2.18 | 1.49 |
FRB20190415A | 600 | 633.68 | 36.98 | 596.70 | 0.57 | 0.50 | 2.90 | 3.01 |
FRB20190415B | 600 | 722.99 | 155.39 | 567.60 | 0.85 | 0.47 | 2.73 | 4.00 |
FRB20190415C | 600 | 650.18 | 168.48 | 481.70 | 0.46 | 0.40 | 2.25 | 1.49 |
FRB20190416A | 600 | 2287.27 | 39.17 | 2248.10 | 0.60 | 1.87 | 14.71 | 6.56 |
FRB20190416B | 600 | 575.36 | 20.56 | 554.80 | 0.69 | 0.46 | 2.66 | 3.08 |
FRB20190417B | 600 | 1161.20 | 35.00 | 1126.20 | 0.46 | 0.94 | 6.28 | 1.04 |
FRB20190417C | 600 | 320.23 | 122.03 | 198.20 | 7.90 | 0.17 | 0.82 | 3.61 |
FRB20190418A | 600 | 184.51 | 70.11 | 114.40 | 0.99 | 0.10 | 0.45 | 1.41 |
FRB20190419A | 600 | 439.97 | 62.27 | 377.70 | 0.41 | 0.31 | 1.69 | 7.70 |
FRB20190419B | 600 | 165.08 | 52.28 | 112.80 | 4.60 | 0.09 | 0.45 | 6.35 |
FRB20190420A | 600 | 609.10 | 65.70 | 543.40 | 0.88 | 0.45 | 2.59 | 3.75 |
FRB20190420B | 600 | 846.84 | 67.44 | 779.40 | 2.20 | 0.65 | 4.00 | 2.14 |
FRB20190420C | 600 | 629.95 | 35.75 | 594.20 | 0.44 | 0.50 | 2.88 | 2.30 |
FRB20190421B | 600 | 392.25 | 96.45 | 295.80 | 5.10 | 0.25 | 1.28 | 5.57 |
FRB20190422A | 600 | 452.30 | 79.50 | 372.80 | 0.60 | 0.31 | 1.67 | 1.09 |
FRB20190422B | 600 | 977.39 | 34.09 | 943.30 | 0.22 | 0.79 | 5.05 | 3.32 |
FRB20190423A | 600 | 242.65 | 31.65 | 211.00 | 10.80 | 0.18 | 0.88 | 5.65 |
FRB20190423B | 600 | 584.95 | 482.65 | 102.30 | 0.87 | 0.09 | 0.40 | 9.78 |
FRB20190423C | 600 | 855.53 | 60.43 | 795.10 | 1.23 | 0.66 | 4.10 | 1.25 |
FRB20190423D | 600 | 496.46 | 66.16 | 430.30 | 1.71 | 0.36 | 1.97 | 4.30 |
FRB20190424A | 600 | 758.67 | 35.47 | 723.20 | 1.13 | 0.60 | 3.65 | 9.26 |
FRB20190425A | 600 | 128.16 | 48.76 | 79.40 | 18.60 | 0.07 | 0.31 | 1.23 |
FRB20190425B | 600 | 1031.72 | 52.72 | 979.00 | 1.25 | 0.82 | 5.29 | 2.06 |
FRB20190426A | 600 | 340.66 | 55.86 | 284.80 | 1.59 | 0.24 | 1.23 | 1.60 |
FRB20190427A | 600 | 455.78 | 84.98 | 370.80 | 3.90 | 0.31 | 1.66 | 7.03 |
FRB20190428A | 600 | 969.40 | 27.00 | 942.40 | 2.22 | 0.79 | 5.05 | 3.35 |
FRB20190429A | 600 | 470.88 | 57.58 | 413.30 | 0.80 | 0.34 | 1.88 | 1.84 |
FRB20190429B | 600 | 295.65 | 42.15 | 253.50 | 0.74 | 0.21 | 1.08 | 5.76 |
FRB20190430A | 600 | 339.25 | 57.85 | 281.40 | 0.75 | 0.23 | 1.21 | 7.34 |
FRB20190430B | 600 | 2619.40 | 36.40 | 2583.00 | 0.38 | 2.15 | 17.43 | 5.65 |
FRB20190430C | 600 | 400.56 | 99.06 | 301.50 | 2.17 | 0.25 | 1.31 | 2.47 |
FRB20190501B | 600 | 784.07 | 43.57 | 740.50 | 0.88 | 0.62 | 3.76 | 7.61 |
FRB20190502A | 600 | 625.77 | 34.97 | 590.80 | 3.18 | 0.49 | 2.87 | 1.64 |
FRB20190502B | 600 | 918.61 | 33.81 | 884.80 | 2.58 | 0.74 | 4.67 | 3.36 |
FRB20190502C | 600 | 396.84 | 47.44 | 349.40 | 3.60 | 0.29 | 1.55 | 5.68 |
FRB20190515A | 600 | 450.50 | 157.40 | 293.10 | 0.55 | 0.24 | 1.27 | 5.89 |
FRB20190515B | 600 | 822.19 | 32.49 | 789.70 | 2.80 | 0.66 | 4.07 | 2.81 |
FRB20190515D | 600 | 426.06 | 47.76 | 378.30 | 3.00 | 0.32 | 1.70 | 5.65 |
FRB20190516B | 600 | 1235.42 | 33.32 | 1202.10 | 1.13 | 1.00 | 6.81 | 2.98 |
FRB20190517C | 600 | 335.57 | 187.97 | 147.60 | 3.10 | 0.12 | 0.59 | 7.54 |
FRB20190517D | 600 | 1180.15 | 93.35 | 1086.80 | 0.45 | 0.91 | 6.01 | 9.42 |
FRB20190518B | 600 | 913.77 | 26.07 | 887.70 | 1.53 | 0.74 | 4.69 | 2.01 |
FRB20190518C | 600 | 444.08 | 41.68 | 402.40 | 6.70 | 0.34 | 1.82 | 1.45 |
FRB20190518D | 600 | 202.46 | 53.96 | 148.50 | 1.36 | 0.12 | 0.60 | 3.35 |
FRB20190518G | 600 | 524.95 | 63.05 | 461.90 | 0.99 | 0.38 | 2.14 | 2.92 |
FRB20190519D | 600 | 539.77 | 30.47 | 509.30 | 0.36 | 0.42 | 2.40 | 1.32 |
FRB20190519E | 600 | 693.83 | 27.53 | 666.30 | 1.00 | 0.56 | 3.31 | 6.79 |
FRB20190519F | 600 | 797.77 | 42.07 | 755.70 | 0.75 | 0.63 | 3.85 | 6.80 |
FRB20190519G | 600 | 430.09 | 73.49 | 356.60 | 1.11 | 0.30 | 1.58 | 1.83 |
FRB20190519H | 600 | 1170.87 | 59.37 | 1111.50 | 3.20 | 0.93 | 6.18 | 7.05 |
FRB20190519J | 600 | 642.76 | 56.06 | 586.70 | 0.63 | 0.49 | 2.84 | 3.20 |
FRB20190520A | 600 | 432.51 | 79.71 | 352.80 | 1.08 | 0.29 | 1.56 | 1.74 |
FRB20190527A | 600 | 584.58 | 33.68 | 550.90 | 0.47 | 0.46 | 2.64 | 2.07 |
FRB20190527C | 600 | 535.44 | 73.84 | 461.60 | 3.00 | 0.38 | 2.14 | 8.84 |
FRB20190529A | 600 | 704.45 | 165.45 | 539.00 | 0.47 | 0.45 | 2.57 | 1.97 |
FRB20190530A | 600 | 555.45 | 139.25 | 416.20 | 0.58 | 0.35 | 1.89 | 1.35 |
FRB20190531A | 600 | 324.70 | 44.00 | 280.70 | ... | 0.23 | 1.21 | ... |
FRB20190531B | 600 | 167.96 | 43.06 | 124.90 | ... | 0.10 | 0.50 | ... |
FRB20190531C | 600 | 478.20 | 132.40 | 345.80 | 0.37 | 0.29 | 1.53 | 5.71 |
FRB20190531E | 600 | 328.20 | 32.00 | 296.20 | 2.70 | 0.25 | 1.28 | 2.96 |
FRB20190601A | 600 | 2227.89 | 32.99 | 2194.90 | 0.73 | 1.83 | 14.29 | 7.56 |
FRB20190601B | 600 | 787.80 | 41.90 | 745.90 | 1.00 | 0.62 | 3.79 | 8.80 |
FRB20190601C | 600 | 424.07 | 186.37 | 237.70 | 1.32 | 0.20 | 1.00 | 8.93 |
FRB20190601D | 600 | 668.47 | 63.87 | 604.60 | 0.63 | 0.50 | 2.95 | 3.42 |
FRB20190603B | 600 | 504.32 | 100.32 | 404.00 | 1.70 | 0.34 | 1.83 | 3.71 |
FRB20190604C | 600 | 515.64 | 163.94 | 351.70 | 1.56 | 0.29 | 1.56 | 2.50 |
FRB20190604D | 600 | 1021.17 | 24.77 | 996.40 | 0.82 | 0.83 | 5.40 | 1.40 |
FRB20190604E | 600 | 1218.60 | 26.00 | 1192.60 | 1.16 | 0.99 | 6.74 | 3.01 |
FRB20190604G | 600 | 233.05 | 51.45 | 181.60 | 1.15 | 0.15 | 0.74 | 4.35 |
FRB20190605C | 600 | 187.64 | 37.84 | 149.80 | 4.60 | 0.12 | 0.60 | 1.15 |
FRB20190605D | 600 | 1656.53 | 48.83 | 1607.70 | 0.82 | 1.34 | 9.74 | 4.21 |
FRB20190606B | 600 | 277.49 | 55.09 | 222.40 | 2.62 | 0.19 | 0.93 | 1.53 |
FRB20190607A | 600 | 562.45 | 43.95 | 518.50 | 4.35 | 0.43 | 2.45 | 1.67 |
FRB20190607B | 600 | 289.38 | 138.28 | 151.10 | 1.06 | 0.13 | 0.61 | 2.71 |
FRB20190608A | 600 | 722.18 | 38.38 | 683.80 | 1.29 | 0.57 | 3.42 | 9.29 |
FRB20190609A | 600 | 316.64 | 58.44 | 258.20 | 3.60 | 0.22 | 1.10 | 2.92 |
FRB20190609B | 600 | 292.19 | 52.29 | 239.90 | 11.50 | 0.20 | 1.01 | 7.94 |
FRB20190609C | 600 | 480.28 | 112.68 | 367.60 | 0.64 | 0.31 | 1.64 | 1.13 |
FRB20190609D | 600 | 511.71 | 57.51 | 454.20 | 0.66 | 0.38 | 2.10 | 1.87 |
FRB20190612A | 600 | 432.29 | 41.69 | 390.60 | 0.79 | 0.33 | 1.76 | 1.60 |
FRB20190612B | 600 | 187.60 | 27.70 | 159.90 | 2.41 | 0.13 | 0.65 | 6.95 |
FRB20190612C | 600 | 1641.57 | 107.77 | 1533.80 | 3.80 | 1.28 | 9.19 | 1.75 |
FRB20190613A | 600 | 714.98 | 53.48 | 661.50 | 1.07 | 0.55 | 3.28 | 7.14 |
FRB20190613B | 600 | 285.14 | 168.84 | 116.30 | 1.08 | 0.10 | 0.46 | 1.59 |
FRB20190614A | 600 | 1064.04 | 52.34 | 1011.70 | 0.83 | 0.84 | 5.51 | 1.47 |
FRB20190614B | 600 | 581.91 | 54.91 | 527.00 | 4.50 | 0.44 | 2.50 | 1.79 |
FRB20190614C | 600 | 589.16 | 57.46 | 531.70 | 0.50 | 0.44 | 2.53 | 2.03 |
FRB20190616A | 600 | 212.59 | 25.49 | 187.10 | 0.73 | 0.16 | 0.77 | 2.95 |
FRB20190617A | 600 | 195.77 | 46.67 | 149.10 | 5.80 | 0.12 | 0.60 | 1.44 |
FRB20190617B | 600 | 273.51 | 43.81 | 229.70 | 0.99 | 0.19 | 0.96 | 6.22 |
FRB20190617C | 600 | 640.16 | 45.36 | 594.80 | 0.54 | 0.50 | 2.89 | 2.83 |
FRB20190618A | 600 | 228.95 | 77.25 | 151.70 | 2.40 | 0.13 | 0.61 | 6.19 |
FRB20190619A | 600 | 899.91 | 37.61 | 862.30 | 1.57 | 0.72 | 4.53 | 1.93 |
FRB20190619B | 600 | 270.59 | 45.89 | 224.70 | 1.96 | 0.19 | 0.94 | 1.17 |
FRB20190619C | 600 | 488.27 | 69.27 | 419.00 | 0.72 | 0.35 | 1.91 | 1.71 |
FRB20190619D | 600 | 378.47 | 63.97 | 314.50 | 0.48 | 0.26 | 1.37 | 6.00 |
FRB20190621B | 600 | 1061.23 | 30.73 | 1030.50 | 0.30 | 0.86 | 5.63 | 5.55 |
FRB20190621C | 600 | 570.27 | 25.67 | 544.60 | 1.98 | 0.45 | 2.60 | 8.48 |
FRB20190621D | 600 | 647.51 | 50.71 | 596.80 | 0.89 | 0.50 | 2.90 | 4.70 |
FRB20190622A | 600 | 1122.82 | 56.82 | 1066.00 | 0.61 | 0.89 | 5.87 | 1.22 |
FRB20190623A | 600 | 1082.20 | 74.20 | 1008.00 | 0.41 | 0.84 | 5.48 | 7.21 |
FRB20190623B | 600 | 1556.77 | 143.77 | 1413.00 | 1.58 | 1.18 | 8.31 | 6.04 |
FRB20190623C | 600 | 1049.83 | 48.83 | 1001.00 | 1.92 | 0.83 | 5.43 | 3.32 |
FRB20190624A | 600 | 973.85 | 37.85 | 936.00 | 0.58 | 0.78 | 5.00 | 8.60 |
FRB20190624B | 600 | 213.92 | 69.72 | 144.20 | 16.50 | 0.12 | 0.58 | 3.82 |
FRB20190625A | 600 | 302.14 | 23.14 | 279.00 | 0.35 | 0.23 | 1.20 | 3.36 |
FRB20190625C | 600 | 442.24 | 76.14 | 366.10 | 2.22 | 0.31 | 1.63 | 3.89 |
FRB20190625D | 600 | 717.88 | 101.38 | 616.50 | 5.30 | 0.51 | 3.01 | 3.01 |
FRB20190627A | 600 | 404.22 | 30.32 | 373.90 | 1.98 | 0.31 | 1.67 | 3.63 |
FRB20190627B | 600 | 430.32 | 42.02 | 388.30 | 4.06 | 0.32 | 1.75 | 8.11 |
FRB20190627C | 600 | 968.61 | 48.01 | 920.60 | 4.00 | 0.77 | 4.90 | 5.71 |
FRB20190627D | 600 | 2002.24 | 132.04 | 1870.20 | 0.24 | 1.56 | 11.74 | 1.71 |
FRB20190628A | 600 | 745.84 | 29.84 | 716.00 | 0.81 | 0.60 | 3.61 | 6.49 |
FRB20190628B | 600 | 408.01 | 46.51 | 361.50 | 0.75 | 0.30 | 1.61 | 1.28 |
FRB20190628C | 600 | 1748.44 | 98.84 | 1649.60 | 0.38 | 1.37 | 10.06 | 2.07 |
FRB20190629A | 600 | 503.78 | 35.08 | 468.70 | 0.82 | 0.39 | 2.18 | 2.50 |
FRB20190630B | 600 | 652.15 | 150.55 | 501.60 | 0.92 | 0.42 | 2.36 | 3.27 |
FRB20190630C | 600 | 1660.35 | 68.05 | 1592.30 | 0.66 | 1.33 | 9.63 | 3.32 |
FRB20190630D | 600 | 323.52 | 43.72 | 279.80 | 1.73 | 0.23 | 1.20 | 1.67 |
FRB20190701A | 600 | 637.09 | 54.29 | 582.80 | 1.26 | 0.49 | 2.82 | 6.30 |
FRB20190701B | 600 | 749.11 | 61.51 | 687.60 | 1.10 | 0.57 | 3.44 | 8.03 |
FRB20190701C | 600 | 974.20 | 58.40 | 915.80 | 0.88 | 0.76 | 4.87 | 1.24 |
FRB20190701D | 600 | 933.36 | 55.96 | 877.40 | 1.33 | 0.73 | 4.62 | 1.70 |
FRB20190701E | 600 | 890.48 | 42.38 | 848.10 | 0.68 | 0.71 | 4.44 | 8.04 |
References
1. Lorimer, D.R.; Bailes, M.; McLaughlin, M.A.; Narkevic, D.J.; Crawford, F. A Bright Millisecond Radio Burst of Extragalactic Origin. Science; 2007; 318, 777. [DOI: https://dx.doi.org/10.1126/science.1147532] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17901298]
2. Thornton, D.; Stappers, B.; Bailes, M.; Barsdell, B.; Bates, S.; Bhat, N.D.R.; Burgay, M.; Burke-Spolaor, S.; Champion, D.J.; Coster, P. et al. A Population of Fast Radio Bursts at Cosmological Distances. Science; 2013; 341, pp. 53-56. [DOI: https://dx.doi.org/10.1126/science.1236789] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23828936]
3. Cordes, J.M.; Chatterjee, S. Fast Radio Bursts: An Extragalactic Enigma. Annu. Rev. Astron. Astrophys.; 2019; 57, pp. 417-465. [DOI: https://dx.doi.org/10.1146/annurev-astro-091918-104501]
4. Petroff, E.; Barr, E.D.; Jameson, A.; Keane, E.F.; Bailes, M.; Kramer, M.; Morello, V.; Tabbara, D.; van Straten, W. FRBCAT: The Fast Radio Burst Catalogue. Publ. Astron. Soc. Aust.; 2016; 33, e045. [DOI: https://dx.doi.org/10.1017/pasa.2016.35]
5. Li, X.J.; Dong, X.F.; Zhang, Z.B.; Li, D. Long and Short Fast Radio Bursts Are Different from Repeating and Nonrepeating Transients. Astrophys. J.; 2021; 923, 230. [DOI: https://dx.doi.org/10.3847/1538-4357/ac3085]
6. CHIME/FRB Collaboration Amiri, M.; Andersen, B.C.; Bandura, K.; Berger, S.; Bhardwaj, M.; Boyce, M.M.; Boyle, P.J.; Brar, C.; Breitman, D. et al. The First CHIME/FRB Fast Radio Burst Catalog. Astrophys. J.; 2021; 257, 59. [DOI: https://dx.doi.org/10.3847/1538-4365/ac33ab]
7. Keane, E.F.; Petroff, E. Fast radio bursts: Search sensitivities and completeness. Mon. Not. R. Astron. Soc.; 2015; 447, pp. 2852-2856. [DOI: https://dx.doi.org/10.1093/mnras/stu2650]
8. Law, C.J.; Bower, G.C.; Burke-Spolaor, S.; Butler, B.; Lawrence, E.; Lazio, T.J.W.; Mattmann, C.A.; Rupen, M.; Siemion, A.; VanderWiel, S. A Millisecond Interferometric Search for Fast Radio Bursts with the Very Large Array. Astrophys. J.; 2015; 807, 16. [DOI: https://dx.doi.org/10.1088/0004-637X/807/1/16]
9. Champion, D.J.; Petroff, E.; Kramer, M.; Keith, M.J.; Bailes, M.; Barr, E.D.; Bates, S.D.; Bhat, N.D.R.; Burgay, M.; Burke-Spolaor, S. et al. Five new fast radio bursts from the HTRU high-latitude survey at Parkes: First evidence for two-component bursts. Mon. Not. R. Astron. Soc. Lett.; 2016; 460, pp. L30-L34. [DOI: https://dx.doi.org/10.1093/mnrasl/slw069]
10. Oppermann, N.; Connor, L.D.; Pen, U.L. The Euclidean distribution of fast radio bursts. Mon. Not. R. Astron. Soc.; 2016; 461, pp. 984-987. [DOI: https://dx.doi.org/10.1093/mnras/stw1401]
11. Rane, A.; Lorimer, D.R.; Bates, S.D.; McMann, N.; McLaughlin, M.A.; Rajwade, K. A search for rotating radio transients and fast radio bursts in the Parkes high-latitude pulsar survey. Mon. Not. R. Astron. Soc.; 2016; 455, pp. 2207-2215. [DOI: https://dx.doi.org/10.1093/mnras/stv2404]
12. Bhandari, S.; Keane, E.F.; Barr, E.D.; Jameson, A.; Petroff, E.; Johnston, S.; Bailes, M.; Bhat, N.D.R.; Burgay, M.; Burke-Spolaor, S. et al. The SUrvey for Pulsars and Extragalactic Radio Bursts - II. New FRB discoveries and their follow-up. Mon. Not. R. Astron. Soc.; 2018; 475, pp. 1427-1446. [DOI: https://dx.doi.org/10.1093/mnras/stx3074]
13. Connor, L.; Petroff, E. On Detecting Repetition from Fast Radio Bursts. Astrophys. J.; 2018; 861, L1. [DOI: https://dx.doi.org/10.3847/2041-8213/aacd02]
14. Patel, C.; Agarwal, D.; Bhardwaj, M.; Boyce, M.M.; Brazier, A.; Chatterjee, S.; Chawla, P.; Kaspi, V.M.; Lorimer, D.R.; McLaughlin, M.A. et al. PALFA Single-pulse Pipeline: New Pulsars, Rotating Radio Transients, and a Candidate Fast Radio Burst. Astrophys. J.; 2018; 869, 181. [DOI: https://dx.doi.org/10.3847/1538-4357/aaee65]
15. Shannon, R.M.; Macquart, J.P.; Bannister, K.W.; Ekers, R.D.; James, C.W.; Osłowski, S.; Qiu, H.; Sammons, M.; Hotan, A.W.; Voronkov, M.A. et al. The dispersion-brightness relation for fast radio bursts from a wide-field survey. Nature; 2018; 562, pp. 386-390. [DOI: https://dx.doi.org/10.1038/s41586-018-0588-y]
16. Farah, W.; Flynn, C.; Bailes, M.; Jameson, A.; Bateman, T.; Campbell-Wilson, D.; Day, C.K.; Deller, A.T.; Green, A.J.; Gupta, V. et al. Five new real-time detections of fast radio bursts with UTMOST. Mon. Not. R. Astron. Soc.; 2019; 488, pp. 2989-3002. [DOI: https://dx.doi.org/10.1093/mnras/stz1748]
17. Parent, E.; Chawla, P.; Kaspi, V.M.; Agazie, G.Y.; Blumer, H.; DeCesar, M.; Fiore, W.; Fonseca, E.; Hessels, J.W.T.; Kaplan, D.L. et al. First Discovery of a Fast Radio Burst at 350 MHz by the GBNCC Survey. Astrophys. J.; 2020; 904, 92. [DOI: https://dx.doi.org/10.3847/1538-4357/abbdf6]
18. Li, D.; Wang, P.; Zhu, W.W.; Zhang, B.; Zhang, X.X.; Duan, R.; Zhang, Y.K.; Feng, Y.; Tang, N.Y.; Chatterjee, S. et al. A bimodal burst energy distribution of a repeating fast radio burst source. Nature; 2021; 598, pp. 267-271. [DOI: https://dx.doi.org/10.1038/s41586-021-03878-5]
19. Xu, H.; Niu, J.R.; Chen, P.; Lee, K.J.; Zhu, W.W.; Dong, S.; Zhang, B.; Jiang, J.C.; Wang, B.J.; Xu, J.W. et al. A fast radio burst source at a complex magnetised site in a barred galaxy. arXiv; 2021; arXiv: 2111.11764
20. Li, D.; Wang, P.; Qian, L.; Krco, M.; Jiang, P.; Yue, Y.; Jin, C.; Zhu, Y.; Pan, Z.; Nan, R. et al. FAST in Space: Considerations for a Multibeam, Multipurpose Survey Using China’s 500-m Aperture Spherical Radio Telescope (FAST). IEEE Microw. Mag.; 2018; 19, pp. 112-119. [DOI: https://dx.doi.org/10.1109/MMM.2018.2802178]
21. CHIME/FRB Collaboration Andersen, B.C.; Bandura, K.M.; Bhardwaj, M.; Bij, A.; Boyce, M.M.; Boyle, P.J.; Brar, C.; Cassanelli, T.; Chawla, P. et al. A bright millisecond-duration radio burst from a Galactic magnetar. Nature; 2020; 587, pp. 54-58. [DOI: https://dx.doi.org/10.1038/s41586-020-2863-y]
22. Bochenek, C. A Fast Radio Burst Associated with a Galactic Magnetar. Proceedings of the American Astronomical Society Meeting Abstracts; New York, NY, USA, 11–15 January 2021; Volume 53, 236.05D.
23. Lin, L.; Zhang, C.F.; Wang, P.; Gao, H.; Guan, X.; Han, J.L.; Jiang, J.C.; Jiang, P.; Lee, K.J.; Li, D. et al. No pulsed radio emission during a bursting phase of a Galactic magnetar. Nature; 2020; 587, pp. 63-65. [DOI: https://dx.doi.org/10.1038/s41586-020-2839-y] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33149293]
24. Mereghetti, S.; Savchenko, V.; Ferrigno, C.; Götz, D.; Rigoselli, M.; Tiengo, A.; Bazzano, A.; Bozzo, E.; Coleiro, A.; Courvoisier, T.J.L. et al. INTEGRAL Discovery of a Burst with Associated Radio Emission from the Magnetar SGR 1935+2154. Astrophys. J.; 2020; 898, L29. [DOI: https://dx.doi.org/10.3847/2041-8213/aba2cf]
25. Li, C.K.; Lin, L.; Xiong, S.L.; Ge, M.Y.; Li, X.B.; Li, T.P.; Lu, F.J.; Zhang, S.N.; Tuo, Y.L.; Nang, Y. et al. HXMT identification of a non-thermal X-ray burst from SGR J1935+2154 and with FRB 200428. Nat. Astron.; 2021; 5, pp. 378-384. [DOI: https://dx.doi.org/10.1038/s41550-021-01302-6]
26. Ridnaia, A.; Svinkin, D.; Frederiks, D.; Bykov, A.; Popov, S.; Aptekar, R.; Golenetskii, S.; Lysenko, A.; Tsvetkova, A.; Ulanov, M. et al. A peculiar hard X-ray counterpart of a Galactic fast radio burst. Nat. Astron.; 2021; 5, pp. 372-377. [DOI: https://dx.doi.org/10.1038/s41550-020-01265-0]
27. Tavani, M.; Casentini, C.; Ursi, A.; Verrecchia, F.; Addis, A.; Antonelli, L.A.; Argan, A.; Barbiellini, G.; Baroncelli, L.; Bernardi, G. et al. An X-ray burst from a magnetar enlightening the mechanism of fast radio bursts. Nat. Astron.; 2021; 5, pp. 401-407. [DOI: https://dx.doi.org/10.1038/s41550-020-01276-x]
28. Petroff, E.; Hessels, J.W.T.; Lorimer, D.R. Fast radio bursts. Astron. Astrophys.; 2019; 27, 4. [DOI: https://dx.doi.org/10.1007/s00159-019-0116-6]
29. Zhang, B. Fast Radio Burst Energetics and Detectability from High Redshifts. Astrophys. J.; 2018; 867, L21. [DOI: https://dx.doi.org/10.3847/2041-8213/aae8e3]
30. Ravi, V.; Catha, M.; D’Addario, L.; Djorgovski, S.G.; Hallinan, G.; Hobbs, R.; Kocz, J.; Kulkarni, S.R.; Shi, J.; Vedantham, H.K. et al. A fast radio burst localized to a massive galaxy. Nature; 2019; 572, pp. 352-354. [DOI: https://dx.doi.org/10.1038/s41586-019-1389-7]
31. Platts, E.; Weltman, A.; Walters, A.; Tendulkar, S.P.; Gordin, J.E.B.; Kandhai, S. A living theory catalogue for fast radio bursts. Phys. Rep.; 2019; 821, pp. 1-27. [DOI: https://dx.doi.org/10.1016/j.physrep.2019.06.003]
32. Yamasaki, S.; Totani, T.; Kiuchi, K. Repeating and non-repeating fast radio bursts from binary neutron star mergers. Publ. Astron. Soc. Jpn.; 2018; 70, 39. [DOI: https://dx.doi.org/10.1093/pasj/psy029]
33. Popov, S.B.; Postnov, K.A. Millisecond extragalactic radio bursts as magnetar flares. arXiv; 2013; arXiv: 1307.4924
34. Metzger, B.D.; Margalit, B.; Sironi, L. Fast radio bursts as synchrotron maser emission from decelerating relativistic blast waves. Mon. Not. R. Astron. Soc.; 2019; 485, pp. 4091-4106. [DOI: https://dx.doi.org/10.1093/mnras/stz700]
35. Geng, J.J.; Huang, Y.F. Fast Radio Bursts: Collisions between Neutron Stars and Asteroids/Comets. Astrophys. J.; 2015; 809, 24. [DOI: https://dx.doi.org/10.1088/0004-637X/809/1/24]
36. Dai, Z.G.; Wang, J.S.; Wu, X.F.; Huang, Y.F. Repeating Fast Radio Bursts from Highly Magnetized Pulsars Traveling through Asteroid Belts. Astrophys. J.; 2016; 829, 27. [DOI: https://dx.doi.org/10.3847/0004-637X/829/1/27]
37. Xiao, D.; Dai, Z.G. Double-peaked Pulse Profile of FRB 200428: Synchrotron Maser Emission from Magnetized Shocks Encountering a Density Jump. Astrophys. J.; 2020; 904, L5. [DOI: https://dx.doi.org/10.3847/2041-8213/abc551]
38. Geng, J.J.; Li, B.; Li, L.B.; Xiong, S.L.; Kuiper, R.; Huang, Y.F. FRB 200428: An Impact between an Asteroid and a Magnetar. Astrophys. J.; 2020; 898, L55. [DOI: https://dx.doi.org/10.3847/2041-8213/aba83c]
39. Geng, J.; Li, B.; Huang, Y. Repeating fast radio bursts from collapses of the crust of a strange star. Innovation; 2021; 2, 100152. [DOI: https://dx.doi.org/10.1016/j.xinn.2021.100152]
40. Li, L.B.; Huang, Y.F.; Geng, J.J.; Li, B. A model of fast radio bursts: Collisions between episodic magnetic blobs. Res. Astron. Astrophys.; 2018; 18, 061. [DOI: https://dx.doi.org/10.1088/1674-4527/18/6/61]
41. Zhang, B. FRB 121102: A Repeatedly Combed Neutron Star by a Nearby Low-luminosity Accreting Supermassive Black Hole. Astrophys. J.; 2018; 854, L21. [DOI: https://dx.doi.org/10.3847/2041-8213/aaadba]
42. Li, Q.C.; Yang, Y.P.; Wang, F.Y.; Xu, K.; Shao, Y.; Liu, Z.N.; Dai, Z.G. Periodic Activities of Repeating Fast Radio Bursts from Be/X-Ray Binary Systems. Astrophys. J.; 2021; 918, L5. [DOI: https://dx.doi.org/10.3847/2041-8213/ac1922]
43. Yang, H.; Zou, Y.C. Orbit-induced Spin Precession as a Possible Origin for Periodicity in Periodically Repeating Fast Radio Bursts. Astrophys. J.; 2020; 893, L31. [DOI: https://dx.doi.org/10.3847/2041-8213/ab800f]
44. Levin, Y.; Beloborodov, A.M.; Bransgrove, A. Precessing Flaring Magnetar as a Source of Repeating FRB 180916.J0158+65. Astrophys. J. Lett.; 2020; 895, L30. [DOI: https://dx.doi.org/10.3847/2041-8213/ab8c4c]
45. Tong, H.; Wang, W.; Wang, H.G. Periodicity in fast radio bursts due to forced precession by a fallback disk. Res. Astron. Astrophys.; 2020; 20, 142. [DOI: https://dx.doi.org/10.1088/1674-4527/20/9/142]
46. Li, D.; Zanazzi, J.J. Emission Properties of Periodic Fast Radio Bursts from the Motion of Magnetars: Testing Dynamical Models. Astrophys. J. Lett.; 2021; 909, L25. [DOI: https://dx.doi.org/10.3847/2041-8213/abeaa4]
47. Sridhar, N.; Metzger, B.D.; Beniamini, P.; Margalit, B.; Renzo, M.; Sironi, L.; Kovlakas, K. Periodic Fast Radio Bursts from Luminous X-ray Binaries. Astrophys. J.; 2021; 917, 13. [DOI: https://dx.doi.org/10.3847/1538-4357/ac0140]
48. Zhang, B. Unexpected emission pattern adds to the enigma of fast radio bursts. Nature; 2020; 582, pp. 344-346. [DOI: https://dx.doi.org/10.1038/d41586-020-01713-x]
49. Xu, K.; Li, Q.C.; Yang, Y.P.; Li, X.D.; Dai, Z.G.; Liu, J. Do the Periodic Activities of Repeating Fast Radio Bursts Represent the Spins of Neutron Stars?. Astrophys. J.; 2021; 917, 2. [DOI: https://dx.doi.org/10.3847/1538-4357/ac05ba]
50. Thompson, A.R.; Clark, B.G.; Wade, C.M.; Napier, P.J. The Very Large Array. Astrophys. J.; 1980; 44, pp. 151-167. [DOI: https://dx.doi.org/10.1086/190688]
51. Bannister, K.W.; Shannon, R.M.; Macquart, J.P.; Flynn, C.; Edwards, P.G.; O’Neill, M.; Osłowski, S.; Bailes, M.; Zackay, B.; Clarke, N. et al. The Detection of an Extremely Bright Fast Radio Burst in a Phased Array Feed Survey. Astrophys. J. Lett.; 2017; 841, L12. [DOI: https://dx.doi.org/10.3847/2041-8213/aa71ff]
52. CHIME/FRB Collaboration Amiri, M.; Bandura, K.; Berger, P.; Bhardwaj, M.; Boyce, M.M.; Boyle, P.J.; Brar, C.; Burhanpurkar, M.; Chawla, P. et al. The CHIME Fast Radio Burst Project: System Overview. Astrophys. J.; 2018; 863, 48. [DOI: https://dx.doi.org/10.3847/1538-4357/aad188]
53. Spitler, L.G.; Scholz, P.; Hessels, J.W.T.; Bogdanov, S.; Brazier, A.; Camilo, F.; Chatterjee, S.; Cordes, J.M.; Crawford, F.; Deneva, J. et al. A repeating fast radio burst. Nature; 2016; 531, pp. 202-205. [DOI: https://dx.doi.org/10.1038/nature17168] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26934226]
54. CHIME/FRB Collaboration Amiri, M.; Bandura, K.; Bhardwaj, M.; Boubel, P.; Boyce, M.M.; Boyle, P.J.;. Brar, C.; Burhanpurkar, M.; Cassanelli, T. et al. A second source of repeating fast radio bursts. Nature; 2019; 566, pp. 235-238. [DOI: https://dx.doi.org/10.1038/s41586-018-0864-x]
55. CHIME/FRB Collaboration Andersen, B.C.; Bandura, K.; Bhardwaj, M.; Boubel, P.; Boyce, M.M.; Boyle, P.J.; Brar, C.; Cassanelli, T.; Chawla, P. et al. CHIME/FRB Discovery of Eight New Repeating Fast Radio Burst Sources. Astrophys. J.; 2019; 885, L24. [DOI: https://dx.doi.org/10.3847/2041-8213/ab4a80]
56. Kumar, P.; Shannon, R.M.; Osłowski, S.; Qiu, H.; Bhandari, S.; Farah, W.; Flynn, C.; Kerr, M.; Lorimer, D.R.; Macquart, J.P. et al. Faint Repetitions from a Bright Fast Radio Burst Source. Astrophys. J.; 2019; 887, L30. [DOI: https://dx.doi.org/10.3847/2041-8213/ab5b08]
57. Luo, R.; Wang, B.J.; Men, Y.P.; Zhang, C.F.; Jiang, J.C.; Xu, H.; Wang, W.Y.; Lee, K.J.; Han, J.L.; Zhang, B. et al. Diverse polarization angle swings from a repeating fast radio burst source. Nature; 2020; 586, pp. 693-696. [DOI: https://dx.doi.org/10.1038/s41586-020-2827-2]
58. Zhang, Z.B.; Choi, C.S. An analysis of the durations of Swift gamma-ray bursts. Astron. Astrophys.; 2008; 484, pp. 293-297. [DOI: https://dx.doi.org/10.1051/0004-6361:20079210]
59. Zhang, Z.B.; Zhang, C.T.; Zhao, Y.X.; Luo, J.J.; Jiang, L.Y.; Wang, X.L.; Han, X.L.; Terheide, R.K. Spectrum-energy Correlations in GRBs: Update, Reliability, and the Long/Short Dichotomy. Publ. Astron. Soc. Pac.; 2018; 130, 054202. [DOI: https://dx.doi.org/10.1088/1538-3873/aaa6af]
60. Zhang, Z.B.; Jiang, M.; Zhang, Y.; Zhang, K.; Li, X.J.; Zhang, Q. On the Spectral Peak Energy of Swift Gamma-Ray Bursts. Astrophys. J.; 2020; 902, 40. [DOI: https://dx.doi.org/10.3847/1538-4357/abb400]
61. Luo, R.; Lee, K.; Lorimer, D.R.; Zhang, B. On the normalized FRB luminosity function. Mon. Not. R. Astron. Soc.; 2018; 481, pp. 2320-2337. [DOI: https://dx.doi.org/10.1093/mnras/sty2364]
62. Caleb, M.; Stappers, B.W.; Rajwade, K.; Flynn, C. Are all fast radio bursts repeating sources?. Mon. Not. R. Astron. Soc.; 2019; 484, pp. 5500-5508. [DOI: https://dx.doi.org/10.1093/mnras/stz386]
63. Li, Y.; Zhang, B.; Nagamine, K.; Shi, J. The FRB 121102 Host Is Atypical among Nearby Fast Radio Bursts. Astrophys. J.; 2019; 884, L26. [DOI: https://dx.doi.org/10.3847/2041-8213/ab3e41]
64. Zhang, B. The physical mechanisms of fast radio bursts. Nature; 2020; 587, pp. 45-53. [DOI: https://dx.doi.org/10.1038/s41586-020-2828-1] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33149290]
65. Ravi, V. The prevalence of repeating fast radio bursts. Nat. Astron.; 2019; 3, pp. 928-931. [DOI: https://dx.doi.org/10.1038/s41550-019-0831-y]
66. Lu, W.; Piro, A.L.; Waxman, E. Implications of Canadian Hydrogen Intensity Mapping Experiment repeating fast radio bursts. Mon. Not. R. Astron. Soc.; 2020; 498, pp. 1973-1982. [DOI: https://dx.doi.org/10.1093/mnras/staa2397]
67. Luo, R.; Men, Y.; Lee, K.; Wang, W.; Lorimer, D.R.; Zhang, B. On the FRB luminosity function—II. Event rate density. Mon. Not. R. Astron. Soc.; 2020; 494, pp. 665-679. [DOI: https://dx.doi.org/10.1093/mnras/staa704]
68. Caleb, M.; Flynn, C.; Bailes, M.; Barr, E.D.; Hunstead, R.W.; Keane, E.F.; Ravi, V.; van Straten, W. Are the distributions of fast radio burst properties consistent with a cosmological population?. Mon. Not. R. Astron. Soc.; 2016; 458, pp. 708-717. [DOI: https://dx.doi.org/10.1093/mnras/stw175]
69. Niino, Y. Fast Radio Bursts’ Recipes for the Distributions of Dispersion Measures, Flux Densities, and Fluences. Astrophys. J.; 2018; 858, 4. [DOI: https://dx.doi.org/10.3847/1538-4357/aab9a9]
70. Lu, W.; Piro, A.L. Implications from ASKAP Fast Radio Burst Statistics. Astrophys. J.; 2019; 883, 40. [DOI: https://dx.doi.org/10.3847/1538-4357/ab3796]
71. Zhang, G.Q.; Wang, F.Y. Energy function, formation rate, and low-metallicity environment of fast radio bursts. Mon. Not. R. Astron. Soc.; 2019; 487, pp. 3672-3678. [DOI: https://dx.doi.org/10.1093/mnras/stz1566]
72. Bhattacharya, M.; Kumar, P. Population Modeling of Fast Radio Bursts from Source Properties. Astrophys. J.; 2020; 899, 124. [DOI: https://dx.doi.org/10.3847/1538-4357/aba8fb]
73. Planck Collaboration Ade, P.A.R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G. et al. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys.; 2016; 594, A13. [DOI: https://dx.doi.org/10.1051/0004-6361/201525830]
74. Fonseca, E.; Andersen, B.C.; Bhardwaj, M.; Chawla, P.; Good, D.C.; Josephy, A.; Kaspi, V.M.; Masui, K.W.; Mckinven, R.; Michilli, D. et al. Nine New Repeating Fast Radio Burst Sources from CHIME/FRB. Astrophys. J.; 2020; 891, L6. [DOI: https://dx.doi.org/10.3847/2041-8213/ab7208]
75. Kirsten, F.; Snelders, M.P.; Jenkins, M.; Nimmo, K.; van den Eijnden, J.; Hessels, J.W.T.; Gawroński, M.P.; Yang, J. Detection of two bright radio bursts from magnetar SGR 1935 + 2154. Nat. Astron.; 2021; 5, pp. 414-422. [DOI: https://dx.doi.org/10.1038/s41550-020-01246-3]
76. Bauer, D.F. Constructing confidence sets using rank statistics. J. Am. Stat. Assoc.; 1972; 67, pp. 687-690. [DOI: https://dx.doi.org/10.1080/01621459.1972.10481279]
77. Hollander, M.; Wolfe, D.A.; Chicken, E. Nonparametric Statistical Methods; John Wiley & Sons: Hoboken, NJ, USA, 2013; Volume 751.
78. Xiao, D.; Wang, F.; Dai, Z. The physics of fast radio bursts. Sci. China Phys. Mech. Astron.; 2021; 64, 249501. [DOI: https://dx.doi.org/10.1007/s11433-020-1661-7]
79. Thode, H.C. Testing for Normality; 1st ed. CRC Press: Boca Raton, CA, USA, 2002.
80. Li, L.B.; Huang, Y.F.; Zhang, Z.B.; Li, D.; Li, B. Intensity distribution function and statistical properties of fast radio bursts. Res. Astron. Astrophys.; 2017; 17, 6. [DOI: https://dx.doi.org/10.1088/1674-4527/17/1/6]
81. Nan, R.; Li, D. The five-hundred-meter aperture spherical radio telescope (FAST) project. IOP Conf. Ser. Mater. Sci. Eng.; 2013; 44, 012022. [DOI: https://dx.doi.org/10.1088/1757-899X/44/1/012022]
82. Li, D.; Nan, R.; Pan, Z. The Five-hundred-meter Aperture Spherical radio Telescope project and its early science opportunities. Proceedings of the Neutron Stars and Pulsars: Challenges and Opportunities after 80 Years; Beijing, China, 20–24 August 2012; van Leeuwen, J. Cambridge University Press: Cambridge, UK, 2013; Volume 291, pp. 325-330. [DOI: https://dx.doi.org/10.1017/S1743921312024015]
83. Zhang, Z.B.; Kong, S.W.; Huang, Y.F.; Li, D.; Li, L.B. Detecting radio afterglows of gamma-ray bursts with FAST. Res. Astron. Astrophys.; 2015; 15, pp. 237-251. [DOI: https://dx.doi.org/10.1088/1674-4527/15/2/008]
84. Spitler, L.G.; Cordes, J.M.; Hessels, J.W.T.; Lorimer, D.R.; McLaughlin, M.A.; Chatterjee, S.; Crawford, F.; Deneva, J.S.; Kaspi, V.M.; Wharton, R.S. et al. Fast Radio Burst Discovered in the Arecibo Pulsar ALFA Survey. Astrophys. J.; 2014; 790, 101. [DOI: https://dx.doi.org/10.1088/0004-637X/790/2/101]
85. Crawford, F.; Rane, A.; Tran, L.; Rolph, K.; Lorimer, D.R.; Ridley, J.P. A search for highly dispersed fast radio bursts in three Parkes multibeam surveys. Mon. Not. R. Astron. Soc.; 2016; 460, pp. 3370-3375. [DOI: https://dx.doi.org/10.1093/mnras/stw1233]
86. Lawrence, E.; Vander Wiel, S.; Law, C.; Burke Spolaor, S.; Bower, G.C. The Nonhomogeneous Poisson Process for Fast Radio Burst Rates. Astron. J.; 2017; 154, 117. [DOI: https://dx.doi.org/10.3847/1538-3881/aa844e]
87. Bera, A.; Bhattacharyya, S.; Bharadwaj, S.; Bhat, N.D.R.; Chengalur, J.N. On modelling the Fast Radio Burst population and event rate predictions. Mon. Not. R. Astron. Soc.; 2016; 457, pp. 2530-2539. [DOI: https://dx.doi.org/10.1093/mnras/stw177]
88. Aggarwal, K. Observational Effects of Banded Repeating FRBs. Astrophys. J.; 2021; 920, L18. [DOI: https://dx.doi.org/10.3847/2041-8213/ac2a3a]
89. Zhang, Z.B.; Chandra, P.; Huang, Y.F.; Li, D. The Redshift Dependence of the Radio Flux of Gamma-Ray Bursts and Their Host Galaxies. Astrophys. J.; 2018; 865, 82. [DOI: https://dx.doi.org/10.3847/1538-4357/aadc62]
90. Macquart, J.P.; Ekers, R. FRB event rate counts - II. Fluence, redshift, and dispersion measure distributions. Mon. Not. R. Astron. Soc.; 2018; 480, pp. 4211-4230. [DOI: https://dx.doi.org/10.1093/mnras/sty2083]
91. Macquart, J.P.; Shannon, R.M.; Bannister, K.W.; James, C.W.; Ekers, R.D.; Bunton, J.D. The Spectral Properties of the Bright Fast Radio Burst Population. Astrophys. J.; 2019; 872, L19. [DOI: https://dx.doi.org/10.3847/2041-8213/ab03d6]
92. Salvaterra, R.; Campana, S.; Vergani, S.D.; Covino, S.; D’Avanzo, P.; Fugazza, D.; Ghirlanda, G.; Ghisellini, G.; Melandri, A.; Nava, L. et al. A Complete Sample of Bright Swift Long Gamma-Ray Bursts. I. Sample Presentation, Luminosity Function and Evolution. Astrophys. J.; 2012; 749, 68. [DOI: https://dx.doi.org/10.1088/0004-637X/749/1/68]
93. Pescalli, A.; Ghirlanda, G.; Salvaterra, R.; Ghisellini, G.; Vergani, S.; Nappo, F.; Salafia, O.; Melandri, A.; Götz, D. The rate and luminosity function of long Gamma Ray Bursts. Astron. Astrophys.; 2015; 587, [DOI: https://dx.doi.org/10.1051/0004-6361/201526760]
94. Deng, C.M.; Wang, X.G.; Guo, B.B.; Lu, R.J.; Wang, Y.Z.; Wei, J.J.; Wu, X.F.; Liang, E.W. Cosmic Evolution of Long Gamma-Ray Burst Luminosity. Astrophys. J.; 2016; 820, 66. [DOI: https://dx.doi.org/10.3847/0004-637X/820/1/66]
95. Gehrels, N. Confidence Limits for Small Numbers of Events in Astrophysical Data. Astrophys. J.; 1986; 303, 336. [DOI: https://dx.doi.org/10.1086/164079]
96. James, C.W.; Ekers, R.D.; Macquart, J.P.; Bannister, K.W.; Shannon, R.M. The slope of the source-count distribution for fast radio bursts. Mon. Not. R. Astron. Soc.; 2019; 483, pp. 1342-1353. [DOI: https://dx.doi.org/10.1093/mnras/sty3031]
97. Heintz, K.E.; Prochaska, J.X.; Simha, S.; Platts, E.; Fong, W.f.; Tejos, N.; Ryder, S.D.; Aggerwal, K.; Bhandari, S.; Day, C.K. et al. Host Galaxy Properties and Offset Distributions of Fast Radio Bursts: Implications for Their Progenitors. Astrophys. J.; 2020; 903, 152. [DOI: https://dx.doi.org/10.3847/1538-4357/abb6fb]
98. Pleunis, Z.; Good, D.C.; Kaspi, V.M.; Mckinven, R.; Ransom, S.M.; Scholz, P.; Bandura, K.; Bhardwaj, M.; Boyle, P.J.; Brar, C. et al. Fast Radio Burst Morphology in the First CHIME/FRB Catalog. Astrophys. J.; 2021; 923, 1. [DOI: https://dx.doi.org/10.3847/1538-4357/ac33ac]
99. Marcote, B.; Nimmo, K.; Hessels, J.W.T.; Tendulkar, S.P.; Bassa, C.G.; Paragi, Z.; Keimpema, A.; Bhardwaj, M.; Karuppusamy, R.; Kaspi, V.M. et al. A repeating fast radio burst source localized to a nearby spiral galaxy. Nature; 2020; 577, pp. 190-194. [DOI: https://dx.doi.org/10.1038/s41586-019-1866-z]
100. Piro, L.; Bruni, G.; Troja, E.; O’Connor, B.; Panessa, F.; Ricci, R.; Zhang, B.; Burgay, M.; Dichiara, S.; Lee, K.J. et al. The fast radio burst FRB 20201124A in a star-forming region: Constraints to the progenitor and multiwavelength counterparts. Astron. Astrophys.; 2021; 656, L15. [DOI: https://dx.doi.org/10.1051/0004-6361/202141903]
101. Bhardwaj, M.; Gaensler, B.M.; Kaspi, V.M.; Landecker, T.L.; Mckinven, R.; Michilli, D.; Pleunis, Z.; Tendulkar, S.P.; Andersen, B.C.; Boyle, P.J. et al. A Nearby Repeating Fast Radio Burst in the Direction of M81. Astrophys. J. Lett.; 2021; 910, L18. [DOI: https://dx.doi.org/10.3847/2041-8213/abeaa6]
102. Ravi, V.; Law, C.J.; Li, D.; Aggarwal, K.; Burke-Spolaor, S.; Connor, L.; Lazio, T.J.W.; Simard, D.; Somalwar, J.; Tendulkar, S.P. The host galaxy and persistent radio counterpart of FRB 20201124A. arXiv; 2021; arXiv: 2106.09710[DOI: https://dx.doi.org/10.1093/mnras/stac465]
103. Bhandari, S.; Heintz, K.E.; Aggarwal, K.; Marnoch, L.; Day, C.K.; Sydnor, J.; Burke-Spolaor, S.; Law, C.J.; Xavier Prochaska, J.; Tejos, N. et al. Characterizing the Fast Radio Burst Host Galaxy Population and its Connection to Transients in the Local and Extragalactic Universe. Astron. J.; 2022; 163, 69. [DOI: https://dx.doi.org/10.3847/1538-3881/ac3aec]
104. Caleb, M.; Spitler, L.G.; Stappers, B.W. One or several populations of fast radio burst sources?. Nat. Astron.; 2018; 2, pp. 839-841. [DOI: https://dx.doi.org/10.1038/s41550-018-0612-z]
105. Palaniswamy, D.; Li, Y.; Zhang, B. Are There Multiple Populations of Fast Radio Bursts?. Astrophys. J.; 2018; 854, L12. [DOI: https://dx.doi.org/10.3847/2041-8213/aaaa63]
106. Hessels, J.W.T.; Spitler, L.G.; Seymour, A.D.; Cordes, J.M.; Michilli, D.; Lynch, R.S.; Gourdji, K.; Archibald, A.M.; Bassa, C.G.; Bower, G.C. et al. FRB 121102 Bursts Show Complex Time-Frequency Structure. Astrophys. J. Lett.; 2019; 876, L23. [DOI: https://dx.doi.org/10.3847/2041-8213/ab13ae]
107. Nimmo, K.; Hessels, J.W.T.; Keimpema, A.; Archibald, A.M.; Cordes, J.M.; Karuppusamy, R.; Kirsten, F.; Li, D.Z.; Marcote, B.; Paragi, Z. Highly polarized microstructure from the repeating FRB 20180916B. Nat. Astron.; 2021; 5, pp. 594-603. [DOI: https://dx.doi.org/10.1038/s41550-021-01321-3]
108. CHIME/FRB Collaboration Amiri, M.; Andersen, B.C.; Bandura, K.M.; Bhardwaj, M.; Boyle, P.J.; Brar, C.; Chawla, P.; Chen, T.; Cliche, J.F. et al. Periodic activity from a fast radio burst source. Nature; 2020; 582, pp. 351-355. [DOI: https://dx.doi.org/10.1038/s41586-020-2398-2]
109. Rajwade, K.M.; Mickaliger, M.B.; Stappers, B.W.; Morello, V.; Agarwal, D.; Bassa, C.G.; Breton, R.P.; Caleb, M.; Karastergiou, A.; Keane, E.F. et al. Possible periodic activity in the repeating FRB 121102. Mon. Not. R. Astron. Soc.; 2020; 495, pp. 3551-3558. [DOI: https://dx.doi.org/10.1093/mnras/staa1237]
110. Cruces, M.; Spitler, L.G.; Scholz, P.; Lynch, R.; Seymour, A.; Hessels, J.W.T.; Gouiffés, C.; Hilmarsson, G.H.; Kramer, M.; Munjal, S. Repeating behaviour of FRB 121102: Periodicity, waiting times, and energy distribution. Mon. Not. R. Astron. Soc.; 2021; 500, pp. 448-463. [DOI: https://dx.doi.org/10.1093/mnras/staa3223]
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Abstract
In this paper, we present a sample of 21 repeating fast radio bursts (FRBs) detected by different radio instruments before September 2021. Using the Anderson–Darling test, we compared the distributions of extra-Galactic dispersion measure (
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Department of Physics, College of Physics, Guizhou University, Guiyang 550025, China;
2 School of Mathematics and Physics, Hebei University of Engineering, Handan 056005, China
3 College of Physics and Electronic Science, Qiannan Normal University, Duyun 55800, China;