It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Surgical management of head and neck cancer requires a careful balance between complete resection of malignancy and preservation of function. Surgeons must also determine whether to resect important cranial nerves that harbor perineural invasion (PNI), as sacrificing nerves can result in significant morbidity including facial paralysis. Our group has previously reported that Dynamic Optical Contrast Imaging (DOCI), a novel non-invasive imaging system, can determine margins between malignant and healthy tissues. Herein, we use an in vivo murine model to demonstrate that DOCI can accurately identify cancer margins and perineural invasion, concordant with companion histology. Eight C3H/HeJ male mice were injected subcutaneously into the bilateral flanks with SCCVIISF, a murine head and neck cancer cell line. DOCI imaging was performed prior to resection to determine margins. Both tumor and margins were sent for histologic sectioning. After validating that DOCI can delineate HNSCC margins, we investigated whether DOCI can identify PNI. In six C3H/HeJ male mice, the left sciatic nerve was injected with PBS and the right with SCCVIISF. After DOCI imaging, the sciatic nerves were harvested for histologic analysis. All DOCI images were acquired intraoperatively and in real-time (10 s per channel), with an operatively relevant wide field of view. DOCI values distinguishing cancer from adjacent healthy tissue types were statistically significant (P < 0.05). DOCI imaging was also able to detect perineural invasion with 100% accuracy compared to control (P < 0.05). DOCI allows for intraoperative, real-time visualization of malignant and healthy tissue margins and perineural invasion to help guide tumor resection.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 University of California, Los Angeles, Department of Head and Neck Surgery, David Geffen School of Medicine, Los Angeles, USA (GRID:grid.19006.3e) (ISNI:0000 0000 9632 6718)
2 University of California, Los Angeles, Department of Electrical and Computer Engineering, Los Angeles, USA (GRID:grid.19006.3e) (ISNI:0000 0000 9632 6718)