It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The outdoor images captured in sand dust weather often suffer from poor contrast and color distortion, which seriously interfere with the performance of intelligent information processing systems. To solve the issues, a novel enhancement algorithm based on fusion strategy is proposed in this paper. It includes two components in sequence: sand removal via the improved Gaussian model-based color correction algorithm and dust elimination using the residual-based convolutional neural network (CNN). Theoretical analysis and experimental results show that compared with the prior sand dust image enhancement methods, the proposed fusion strategy can effectively correct the overall yellowing hue and remove the dust haze disturbance, which provides a constructive idea for the future development of sand dust image enhancement.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Hebei University of Technology, School of Electronic and Information Engineering, Tianjin, China (GRID:grid.412030.4) (ISNI:0000 0000 9226 1013)