It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Multi-label disease classification algorithms help to predict various chronic diseases at an early stage. Diverse deep neural networks are applied for multi-label classification problems to foresee multiple mutually non-exclusive classes or diseases. We propose a federated approach for detecting the chest diseases using DenseNets for better accuracy in prediction of various diseases. Images of chest X-ray from the Kaggle repository is used as the dataset in the proposed model. This new model is tested with both sample and full dataset of chest X-ray, and it outperforms existing models in terms of various evaluation metrics. We adopted transfer learning approach along with the pre-trained network from scratch to improve performance. For this, we have integrated DenseNet121 to our framework. DenseNets have a few focal points as they help to overcome vanishing gradient issues, boost up the feature propagation and reuse and also to reduce the number of parameters. Furthermore, gradCAMS are used as visualization methods to visualize the affected parts on chest X-ray. Henceforth, the proposed architecture will help the prediction of various diseases from a single chest X-ray and furthermore direct the doctors and specialists for taking timely decisions.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Karunya Institute of Technology and Sciences, Department of Computer Science and Engineering, Coimbatore, India (GRID:grid.412056.4) (ISNI:0000 0000 9896 4772); Sahrdaya College of Engineering and Technology, Department of Computer Science and Engineering, Thrissur, India (GRID:grid.412056.4)
2 Karunya Institute of Technology and Sciences, Department of Computer Science and Engineering, Coimbatore, India (GRID:grid.412056.4) (ISNI:0000 0000 9896 4772)