It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Self-motion along linear paths without eye movements creates optic flow that radiates from the direction of travel (heading). Optic flow-sensitive neurons in primate brain area MSTd have been linked to linear heading perception, but the neural basis of more general curvilinear self-motion perception is unknown. The optic flow in this case is more complex and depends on the gaze direction and curvature of the path. We investigated the extent to which signals decoded from a neural model of MSTd predict the observer’s curvilinear self-motion. Specifically, we considered the contributions of MSTd-like units that were tuned to radial, spiral, and concentric optic flow patterns in “spiral space”. Self-motion estimates decoded from units tuned to the full set of spiral space patterns were substantially more accurate and precise than those decoded from units tuned to radial expansion. Decoding only from units tuned to spiral subtypes closely approximated the performance of the full model. Only the full decoding model could account for human judgments when path curvature and gaze covaried in self-motion stimuli. The most predictive units exhibited bias in center-of-motion tuning toward the periphery, consistent with neurophysiology and prior modeling. Together, findings support a distributed encoding of curvilinear self-motion across spiral space.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Colby College, Department of Computer Science, Waterville, USA (GRID:grid.254333.0) (ISNI:0000 0001 2296 8213); Rensselaer Polytechnic Institute, Department of Cognitive Science, Troy, USA (GRID:grid.33647.35) (ISNI:0000 0001 2160 9198)
2 Rensselaer Polytechnic Institute, Department of Cognitive Science, Troy, USA (GRID:grid.33647.35) (ISNI:0000 0001 2160 9198)