It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Mobility data, based on global positioning system (GPS) tracking, have been widely used in many areas. These include, but not limited to: user direction guidance, analyzing travel patterns, and evaluating travel impacts. Transport Mode Detection (TMD) is an essential factor in understanding mobility within the transport system. A TMD model assigns a GPS point or a GPS trajectory to a particular transport mode based on the user’s current activity. However, the complexity of the prediction procedure increases with the number of modes that need to be predicted given the increasing overlaps in feature values between multiple transportation modes. Hence, this study proposes a two-branch deep learning-based TMD model that predicts multi-class transport modes to improve prediction accuracy. In addition, it proposed a weakly supervised labelling model using snorkel to improve the volume of labelled data and resulting TMD model prediction accuracy. We considered publicly available road networks, railway networks, bus routes, etc., for creating road, bus, train labels by overlaying GPS points on these transportation networks. We introduced a boolean (true/false) based soft-labelling function, where the same GPS point overlaid on road or railway network. The raw GPS data were used to generate point-level features such as speed, speed difference, acceleration, acceleration difference, initial bearing and bearing difference, all used as derived features for the TMD model. To construct the model we opted to use two branches where raw GPS latitude and longitude values were used in one and the derived mobility features are used in the other.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Rakuten Institute of Technology, Rakuten Group, Inc., Tokyo, Japan; Rakuten Institute of Technology, Rakuten Group, Inc., Tokyo, Japan