It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Big Data and Cloud Computing as two mainstream technologies, are at the center of concern in the IT field. Every day a huge amount of data is produced from different sources. This data is so big in size that traditional processing tools are unable to deal with them. Besides being big, this data moves fast and has a lot of variety. Big Data is a concept that deals with storing, processing and analyzing large amounts of data. Cloud computing on the other hand is about offering the infrastructure to enable such processes in a cost-effective and efficient manner. Many sectors, including among others businesses (small or large), healthcare, education, etc. are trying to leverage the power of Big Data. In healthcare, for example, Big Data is being used to reduce costs of treatment, predict outbreaks of pandemics, prevent diseases etc. This paper, presents an overview of Big Data Analytics as a crucial process in many fields and sectors. We start by a brief introduction to the concept of Big Data, the amount of data that is generated on a daily bases, features and characteristics of Big Data. We then delve into Big Data Analytics were we discuss issues such as analytics cycle, analytics benefits and the movement from ETL to ELT paradigm as a result of Big Data analytics in Cloud. As a case study we analyze Google’s BigQuery which is a fully-managed, serverless data warehouse that enables scalable analysis over petabytes of data. As a Platform as a Service (PaaS) supports querying using ANSI SQL. We use the tool to perform different experiments such as average read, average compute, average write, on different sizes of datasets.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 University of Prishtina, Faculty of Electrical and Computer Engineering, Department of Computer Engineering, Prishtina, Kosovo (GRID:grid.449627.a) (ISNI:0000 0000 9804 9646)