Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A delay locked loop (DLL) based on a Phase Detector, which Measures the Delay of the Voltage-controlled delay line (PD-MDV), which is tVCDL, with efficient and stable locking performance was proposed. In contrast to conventional phase detectors, the PD-MDV measures tVCDL more accurately; thus, it can always generate the correct up/down (UP/DN) pulses. The proposed technique prevents becoming stuck in the fastest operation, in which UP pulses continue to appear even when tVCDL < tREF, where tREF is the reference time, which is an input of the DLL. In the reverse case, the PD-MDV prohibits DN pulses from continuing to appear under the condition tVCDL > tREF, thereby freeing the DLL from harmonic locking and becoming stuck in the slowest operation. The proposed phase detection scheme was verified under various conditions, including process corners, temperature variations, and abrupt changes in tREF. The proposed 1.2 V, 20~200 MHz DLL with the PD-MDV was designed using the 65 nm process, with a power consumption of 0.4 mW at 200 MHz.

Details

Title
A 1.2 V 0.4 mW 20~200 MHz DLL Based on Phase Detector Measuring the Delay of VCDL
Author
Cho, Sang-Hyun 1 ; Young-Kyun, Cho 2   VIAFID ORCID Logo 

 Samsung Electronics, System-LSI, Hwaseong 18448, Korea 
 Department of Electrical, Electronic and Control Engineering, Kongju National University, Cheonan 31080, Korea 
First page
2434
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2700539490
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.