Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The refined segmentation of nuclei and the cytoplasm is the most challenging task in the automation of cervical cell screening. The U-Shape network structure has demonstrated great superiority in the field of biomedical imaging. However, the classical U-Net network cannot effectively utilize mixed domain information and contextual information, and fails to achieve satisfactory results in this task. To address the above problems, a module based on global dependency and local attention (GDLA) for contextual information modeling and features refinement, is proposed in this study. It consists of three components computed in parallel, which are the global dependency module, the spatial attention module, and the channel attention module. The global dependency module models global contextual information to capture a priori knowledge of cervical cells, such as the positional dependence of the nuclei and cytoplasm, and the closure and uniqueness of the nuclei. The spatial attention module combines contextual information to extract cell boundary information and refine target boundaries. The channel and spatial attention modules are used to provide adaption of the input information, and make it easy to identify subtle but dominant differences of similar objects. Comparative and ablation experiments are conducted on the Herlev dataset, and the experimental results demonstrate the effectiveness of the proposed method, which surpasses the most popular existing channel attention, hybrid attention, and context networks in terms of the nuclei and cytoplasm segmentation metrics, achieving better segmentation performance than most previous advanced methods.

Details

Title
Cervical Cell Segmentation Method Based on Global Dependency and Local Attention
Author
Li, Gang 1 ; Sun, Chengjie 1 ; Xu, Chuanyun 2 ; Zheng, Yu 1 ; Wang, Keya 1 

 School of Artificial Intelligence, Chongqing University of Technology, Chongqing 400054, China; [email protected] (G.L.); [email protected] (Y.Z.); [email protected] (K.W.) 
 College of Computer and Information Science, Chongqing Normal University, Chongqing 401331, China; [email protected] 
First page
7742
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2700541992
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.