Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The study proposes a novel method for synthesis of a discrete-time parallel distributed compensation (PDC) controller for the nonlinear discrete-time Takagi–Sugeno (TS) fuzzy plant model. For each of the fuzzy plant model linear subsystems, a local linear first order proportional-sum (PS) controller is designed. The algebraic technique is used in two-dimensional parameter space, utilizing the characteristic polynomial of the row nondegenerate full transfer function matrix. Each system’s relative stability is accomplished in relation to the selected damping coefficient. The supplementary criterion is the minimal value of the performance index in the form of the sum of squared errors (SSE). However, unlike the traditional technique, output error is influenced by all simultaneous actions on the system: nonzero inputs and nonzero initial conditions. The full transfer function matrix of the system allows for the treatment of simultaneous actions of the input vector and unknown unpredictable initial conditions. In order to show the improvement caused by the application of a new optimization method that considers nonzero initial conditions, a comparison of PDC controllers designed under zero and nonzero initial conditions is given, where the system in both cases starts from the same nonzero initial conditions, which is often the case in practice. The simulation and experimental results on a DC servo motor are shown to demonstrate the suggested method efficiency.

Details

Title
Discrete-Time System Conditional Optimization Based on Takagi–Sugeno Fuzzy Model Using the Full Transfer Function
Author
Jovanović, Radiša 1   VIAFID ORCID Logo  ; Zarić, Vladimir 1   VIAFID ORCID Logo  ; Bučevac, Zoran 1   VIAFID ORCID Logo  ; Bugarić, Uglješa 2   VIAFID ORCID Logo 

 Automatic Control Department, Faculty of Mechanical Engineering, University of Belgrade, 11000 Belgrade, Serbia; [email protected] 
 Industrial Engineering Department, Faculty of Mechanical Engineering, University of Belgrade, 11000 Belgrade, Serbia; [email protected] 
First page
7705
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2700565530
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.