Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Bambusurils, BU[4] and BU[6], were used for the first time as multivalent scaffolds to link glycosidases inhibitors derived from 1-deoxynojirimycin (DNJ). Two linear DNJ ligands having six or nine carbon alkyl azido linkers or a trivalent DNJ dendron were grafted onto octapropargylated BU[4] and dodecapropargylated BU[6] using copper-catalyzed cycloaddition (CuAAC) to yield corresponding neoglycobambus[4] and neoglycobambus[6]urils bearing 8 to 24 iminosugars. The inhibition potencies of neoglycoBU[4], neoglycoBU[6] and neoglycoBU[6] caging anions were evaluated against Jack Bean α-mannosidase and compared to monovalent DNJ derivatives. Strong affinity enhancements per inhibitory head were obtained for the clusters holding trivalent dendrons with inhibitory constants in the nanomolar range (Ki = 24 nM for BU[4] with 24 DNJ units). Interestingly, the anion (bromide or iodide) encapsulated inside the cavity of BU[6] does not modify the inhibition potency of neoglycoBU[6], opening the way to water-soluble glycosidase-directed anion caging agents that may find applications in important fields such as bio(in)organic chemistry or oncology.

Details

Title
Bambus[4,6]urils as Dual Scaffolds for Multivalent Iminosugar Presentation and Ion Transport: Access to Unprecedented Glycosidase-Directed Anion Caging Agents
Author
Lafosse, Marine 1 ; Liang, Yan 2 ; Schneider, Jérémy P 2 ; Cartier, Elise 1 ; Bodlenner, Anne 2   VIAFID ORCID Logo  ; Compain, Philippe 2 ; Heck, Marie-Pierre 1 

 Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SCBM, 91191 Gif-sur-Yvette, France; [email protected] (M.L.); [email protected] (E.C.) 
 Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), Laboratoire d’Innovation Moléculaire et Applications (LIMA), University of Strasbourg|University of Haute-Alsace|CNRS (UMR 7042), 67087 Strasbourg, France; [email protected] (Y.L.); [email protected] (J.P.S.) 
First page
4772
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2700713148
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.