Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Dioxygen (O2) is an environmentally benign and abundant oxidant whose utilization is of great interest in the design of bioinspired synthetic catalytic oxidation systems to reduce energy consumption. However, it is unfortunate that utilization of O2 is a significant challenge because of the thermodynamic stability of O2 in its triplet ground state. Nevertheless, nature is able to overcome the spin state barrier using enzymes, which contain transition metals with unpaired d-electrons facilitating the activation of O2 by metal coordination. This inspires bioinorganic chemists to synthesize biomimetic small-molecule iron porphyrin complexes to carry out the O2 activation, wherein Fe-O2 species have been implicated as the key reactive intermediates. In recent years, a number of Fe-O2 intermediates have been synthesized by activating O2 at iron centers supported on porphyrin ligands. In this review, we focus on a few examples of these advances with emphasis in each case on the particular design of iron porphyrin complexes and particular reaction environments to stabilize and isolate metal-O2 intermediates in dioxygen activation, which will provide clues to elucidate structures of reactive intermediates and mechanistic insights in biological processes.

Details

Title
Isolating Fe-O2 Intermediates in Dioxygen Activation by Iron Porphyrin Complexes
Author
Lu, Xiaoyan  VIAFID ORCID Logo  ; Wang, Shuang; Jian-Hua, Qin
First page
4690
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2700740492
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.