Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this study, [Sr0.99Eu0.01]3MgSi2O8 phosphors were sintered at 1200–1400 °C for 1–5 h by using the solid-state reaction method. The crystallinity and morphology of these phosphors were characterized through X-ray diffraction analysis and field-emission scanning electron microscopy, respectively, to determine their luminescence. The photoluminescence properties, including the excitation and emission properties, of the prepared phosphors were investigated through fluorescence spectrophotometry. The α-Sr2SiO4, Sr2MgSi2O7, and Sr3MgSi2O8 phases coexisted in the [Sr0.99Eu0.01]3MgSi2O8 phosphors, which were synthesized at low temperatures. The particles of these phosphors had many fine hairs on their surface and resembled Clavularia viridis, which is a coral species. Transmission electron microscopy and energy dispersive X-ray spectroscopy indicated that the fine hairs contained the Sr2SiO4 and Sr2MgSi2O7 phases. However, when the [Sr0.99Eu0.01]3MgSi2O8 phosphors were sintered at 1400 °C, the Sr3MgSi2O8 phase was observed, and the Eu2+-doped Sr3MgSi2O8 phase dominated the only broad emission band, which had a central wavelength of 457 nm (blue light). The emission peaks at this wavelength were attributed to the 4f65d1–4f7 transition at the Sr2+(I) site, where Sr2+ was substituted by Eu2+. The average decay time of the synthesized phosphors was calculated to be 1.197 ms. The aforementioned results indicate that [Sr0.99Eu0.01]3MgSi2O8 can be used as a blue-emitting phosphor in ultraviolet-excited white light-emitting diodes.

Details

Title
Synthesis and Luminescence Properties of Eu2+-Doped Sr3MgSi2O8 Blue Light-Emitting Phosphor for Application in Near-Ultraviolet Excitable White Light-Emitting Diodes
Author
Chou-Yuan, Lee 1   VIAFID ORCID Logo  ; Chia-Ching, Wu 2 ; Hsin-Hua, Li 3 ; Cheng-Fu, Yang 4 

 School of Big Data, Fuzhou University of International Studies and Trade, Fuzhou 350202, China 
 Department of Applied Science, National Taitung University, Taitung 95092, Taiwan 
 Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 811726, Taiwan 
 Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 811726, Taiwan; Department of Aeronautical Engineering, Chaoyang University of Technology, Taichung 413310, Taiwan 
First page
2706
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20794991
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2700744744
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.