Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Two-dimensional MXenes possessed exceptional physiochemical properties such as high electrical conductivity (20,000 Scm−1), flexibility, mechanical strength (570 MPa), and hydrophilic surface functionalities that have been widely explored for energy storage, sensing, and catalysis applications. Recently, the fabrication of MXenes thin films has attracted significant attention toward electronic devices and sensor applications. This review summarizes the exciting features of MXene thin film fabrication methods such as vacuum-assisted filtration (VAF), electrodeposition techniques, spin coating, spray coating, dip-coating methods, and other physical/chemical vapor deposition methods. Furthermore, a comparison between different methods available for synthesizing a variety of MXenes films was discussed in detail. This review further summarizes fundamental aspects and advances of MXenes thin films in solar cells, batteries, electromagnetic interference shielding, sensing, etc., to date. Finally, the challenges and opportunities in terms of future research, development, and applications of MXenes-based films are discussed. A comprehensive understanding of these competitive features and challenges shall provide guidelines and inspiration for further growth in MXenes-based functional thin films and contribute to the advances in MXenes technology.

Details

Title
MXenes Thin Films: From Fabrication to Their Applications
Author
Israt Ali 1 ; Muhammad Faraz Ud Din 2 ; Zhi-Gang Gu 1   VIAFID ORCID Logo 

 Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; [email protected]; University of Chinese Academy of Sciences, Beijing 100049, China 
 Institute of Physics, Slovak Academy of Sciences, 84511 Bratislava, Slovakia; [email protected] 
First page
4925
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2700744747
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.