Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Long intergenic non-coding RNAs (lincRNAs) have been demonstrated to be vital regulators of diverse biological processes in both animals and plants. While many lincRNAs have been identified in cotton, we still know little about the repositories and conservativeness of lincRNAs in different cotton species or about their role in responding to biotic stresses. Here, by using publicly available RNA-seq datasets from diverse sources, including experiments of Verticillium dahliae (Vd) infection, we identified 24,425 and 17,713 lincRNAs, respectively, in Gossypium hirsutum (Ghr) and G. barbadense (Gba), the two cultivated allotetraploid cotton species, and 6933 and 5911 lincRNAs, respectively, in G. arboreum (Gar) and G. raimondii (Gra), the two extant diploid progenitors of the allotetraploid cotton. While closely related subgenomes, such as Ghr_At and Gba_At, tend to have more conserved lincRNAs, most lincRNAs are species-specific. The majority of the synthetic and transcribed lincRNAs (78.2%) have a one-to-one orthologous relationship between different (sub)genomes, although a few of them (0.7%) are retained in all (sub)genomes of the four species. The Vd responsiveness of lincRNAs seems to be positively associated with their conservation level. The major functionalities of the Vd-responsive lincRNAs seem to be largely conserved amongst Gra, Ghr, and Gba. Many Vd-responsive Ghr-lincRNAs overlap with Vd-responsive QTL, and several lincRNAs were predicted to be endogenous target mimicries of miR482/2118, with a pair being highly conserved between Ghr and Gba. On top of the confirmation of the feature characteristics of the lincRNAs previously reported in cotton and other species, our study provided new insights into the conservativeness and divergence of lincRNAs during cotton evolution and into the relationship between the conservativeness and Vd responsiveness of lincRNAs. The study also identified candidate lincRNAs with a potential role in disease response for functional characterization.

Details

Title
The Conservation of Long Intergenic Non-Coding RNAs and Their Response to Verticillium dahliae Infection in Cotton
Author
Chen, Li 1   VIAFID ORCID Logo  ; Shen, Enhui 2   VIAFID ORCID Logo  ; Zhao, Yunlei 3 ; Wang, Hongmei 3 ; Wilson, Iain 4   VIAFID ORCID Logo  ; Qian-Hao, Zhu 4   VIAFID ORCID Logo 

 School of Life Sciences, Westlake University, Hangzhou 310024, China; [email protected] 
 Institute of Crop Science and Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China; [email protected] 
 State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; [email protected] (Y.Z.); [email protected] (H.W.) 
 CSIRO Agriculture and Food, Canberra, ACT 2601, Australia; [email protected] 
First page
8594
Publication year
2022
Publication date
2022
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2700744778
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.