Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Reducing the particle size of active material is an effective solution to the poor rate performance of the lithium-ion battery. In this study, we proposed a facile strategy for the preparation of nano-graphite as an anode for a lithium-ion battery via the rapid mechanical pulverization method. It is the first time that diamond particle was selected as the medium to achieve high preparation efficiency and low energy consumption. The as-prepared nano-graphite with the size from 10 to 300 nm displays an intact structure and high specific surface area. The introduced oxygen atoms increased the wettability of nano-graphite electrode and lowered its polarization. The nano-graphite prepared from three hours of grinding shows an excellent reversible capacity of 191 mAh g−1, at a rate of 5 C, after 480 cycles, along with an increase of 86% in capacity, at 1 C, in comparison with pristine graphite. The highlight of this strategy is to optimize the current preparation method. The good electrochemical performance comes from the combined effect of nano-scale particle size, large specific surface area, and continuous mesopores.

Details

Title
Nano-Graphite Prepared by Rapid Pulverization as Anode for Lithium-Ion Batteries
Author
Liu, Wei 1 ; Zong, Kai 1 ; Li, Ying 1 ; Deng, Yonggui 2 ; Hussain, Arshad 1 ; Cai, Xingke 1   VIAFID ORCID Logo 

 Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; [email protected] (W.L.); [email protected] (K.Z.); [email protected] (Y.L.); [email protected] (A.H.) 
 College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China; [email protected] 
First page
5148
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2700746100
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.