Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Hashing has been widely used for large-scale remote sensing image retrieval due to its outstanding advantages in storage and search speed. Recently, deep hashing methods, which produce discriminative hash codes by building end-to-end deep convolutional networks, have shown promising results. However, training these networks requires numerous labeled images, which are scarce and expensive in remote sensing datasets. In order to solve this problem, we propose a deep unsupervised hashing method, namely deep contrastive self-supervised hashing (DCSH), which uses only unlabeled images to learn accurate hash codes. It eliminates the need for label annotation by maximizing the consistency of different views generated from the same image. More specifically, we assume that the hash codes generated from different views of the same image are similar, and those generated from different images are dissimilar. On the basis of the hypothesis, we can develop a novel loss function containing the temperature-scaled cross-entropy loss and the quantization loss to train the developed deep network end-to-end, resulting in hash codes with semantic similarity preserved. Our proposed network contains four parts. First, each image is transformed into two different views using data augmentation. After that, they are fed into an encoder with the same shared parameters to obtain deep discriminate features. Following this, a hash layer converts the high-dimensional image representations into compact binary codes. Lastly, a novel hash function is introduced to train the proposed network end-to-end and thus guide generated hash codes with semantic similarity. Extensive experiments on two popular benchmark datasets of the UC Merced Land Use Database and the Aerial Image Dataset have demonstrated that our DCSH has significant superiority in remote sensing image retrieval compared with state-of-the-art unsupervised hashing methods.

Details

Title
Deep Contrastive Self-Supervised Hashing for Remote Sensing Image Retrieval
Author
Tan, Xiaoyan 1 ; Zou, Yun 1   VIAFID ORCID Logo  ; Guo, Ziyang 2 ; Zhou, Ke 1 ; Yuan, Qiangqiang 3   VIAFID ORCID Logo 

 Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; [email protected] (X.T.); [email protected] (Y.Z.) 
 School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing 210044, China; [email protected] 
 School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China; [email protected] 
First page
3643
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2700757036
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.