Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Deep neural networks have demonstrated the capability of solving classification problems using hierarchical models, and fuzzy image preprocessing has proven to be efficient in handling uncertainty found in images. This paper presents the combination of fuzzy image edge-detection and the usage of a convolutional neural network for a computer vision system to classify guitar types according to their body model. The focus of this investigation is to compare the effects of performing image-preprocessing techniques on raw data (non-normalized images) with different fuzzy edge-detection methods, specifically fuzzy Sobel, fuzzy Prewitt, and fuzzy morphological gradient, before feeding the images into a convolutional neural network to perform a classification task. We propose and compare two convolutional neural network architectures to solve the task. Fuzzy edge-detection techniques are compared against their classical counterparts (Sobel, Prewitt, and morphological gradient edge-detection) and with grayscale and color images in the RGB color space. The fuzzy preprocessing methodologies highlight the most essential features of each image, achieving favorable results when compared to the classical preprocessing methodologies and against a pre-trained model with both proposed models, as well as achieving a reduction in training times of more than 20% compared to RGB images.

Details

Title
Fuzzy Edge-Detection as a Preprocessing Layer in Deep Neural Networks for Guitar Classification
Author
Torres, Cesar; Gonzalez, Claudia I; Martinez, Gabriela E
First page
5892
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2700762734
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.