Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Object detection is used widely in remote sensing image interpretation. Although most models used for object detection have achieved high detection accuracy, computational complexity and low detection speeds limit their application in real-time detection tasks. This study developed an adaptive feature-aware method of object detection in remote sensing images based on the single-shot detector architecture called adaptive feature-aware detector (AFADet). Self-attention is used to extract high-level semantic information derived from deep feature maps for spatial localization of objects and the model is improved in localizing objects. The adaptive feature-aware module is used to perform adaptive cross-scale depth fusion of different-scale feature maps to improve the learning ability of the model and reduce the influence of complex backgrounds in remote sensing images. The focal loss is used during training to address the positive and negative sample imbalance problem, reduce the influence of the loss value dominated by easily classified samples, and enhance the stability of model training. Experiments are conducted on three object detection datasets, and the results are compared with those of the classical and recent object detection algorithms. The mean average precision(mAP) values are 66.12%, 95.54%, and 86.44% for three datasets, which suggests that AFADet can detect remote sensing images in real-time with high accuracy and can effectively balance detection accuracy and speed.

Details

Title
Object Detection Based on Adaptive Feature-Aware Method in Optical Remote Sensing Images
Author
Wang, Jiaqi; Gong, Zhihui; Liu, Xiangyun; Guo, Haitao; Yu, Donghang  VIAFID ORCID Logo  ; Ding, Lei
First page
3616
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2700766152
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.