Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

LiDAR is an excellent source of elevation data used in many surveys. The spaceborne handle system, Global Ecosystem Dynamics Investigation (GEDI), provides ground elevation information with high accuracy except for areas with steep slopes. GEDI data have a lot of noise from atmospheric conditions, and therefore filtering procedures are mandatory to select the best dataset. The dataset presents uncertainties of different magnitudes, with values reaching more than 100 m of difference between the reference data and the GEDI data. The challenge is to find a criterion to determine a threshold to filter accurate GEDI samples. This research aims to identify the threshold based on the difference values between the reference data and the GEDI data to select the maximum number of samples with low RMSE values. Therefore, we used the Kolmogorov–Smirnov (KS) non-parametric test to define the best threshold based on a normal distribution. Our results demonstrated a lower RMSE value with a high number of samples when compared with the quality flag parameter threshold, even using sensitivity parameter thresholds. This method is useful for achieving the best possible accuracy from GEDI data worldwide.

Details

Title
Estimating the Optimal Threshold for Accuracy Assessment of the Global Ecosystem Dynamics Investigation (GEDI) Data in a Gentle Relief Urban Area
Author
Felipe Lima Ramos Barbosa 1   VIAFID ORCID Logo  ; Renato Fontes Guimarães 1   VIAFID ORCID Logo  ; Osmar Abílio de Carvalho Júnior 1   VIAFID ORCID Logo  ; Roberto Arnaldo Trancoso Gomes 1   VIAFID ORCID Logo  ; Osmar Luiz Ferreira de Carvalho 2   VIAFID ORCID Logo  ; Thyego Pery Monteiro de Lima 3   VIAFID ORCID Logo 

 Departamento de Geografia, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Brasília 70910-900, Brazil; [email protected] (F.L.R.B.); [email protected] (O.A.d.C.J.); [email protected] (R.A.T.G.) 
 Departamento de Ciência da Computação, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Brasília 70910-900, Brazil; [email protected] 
 Programa de Pós-Graduação em Ciências Ambientais, Campus Planaltina, Universidade de Brasília, Brasília 70910-900, Brazil; [email protected] 
First page
3540
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2700767123
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.