Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The rapid and accurate discovery of damage information of the affected buildings is of great significance for postdisaster emergency rescue. In some related studies, the models involved can detect damaged buildings relatively accurately, but their time cost is high. Models that can guarantee both detection accuracy and high efficiency are urgently needed. In this paper, we propose a new transfer-learning deep attention network (TDA-Net). It can achieve a balance of accuracy and efficiency. The benchmarking network for TDA-Net uses a pair of deep residual networks and is pretrained on a large-scale dataset of disaster-damaged buildings. The pretrained deep residual networks have strong sensing properties on the damage information, which ensures the effectiveness of the network in prefeature grasping. In order to make the network have a more robust perception of changing features, a set of deep attention bidirectional encoding and decoding modules is connected after the TDA-Net benchmark network. When performing a new task, only a small number of samples are needed to train the network, and the damage information of buildings in the whole area can be extracted. The bidirectional encoding and decoding structure of the network allows two images to be input into the model independently, which can effectively capture the features of a single image, thereby improving the detection accuracy. Our experiments on the xView2 dataset and three datasets of disaster regions achieve high detection accuracy, which demonstrates the feasibility of our method.

Details

Title
TDA-Net: A Novel Transfer Deep Attention Network for Rapid Response to Building Damage Discovery
Author
Zhang, Haiming 1 ; Wang, Mingchang 2   VIAFID ORCID Logo  ; Zhang, Yongxian 1 ; Ma, Guorui 1 

 State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China; [email protected] (H.Z.); [email protected] (Y.Z.) 
 College of Geo-Exploration Science and Technology, Jilin University, Changchun 130026, China; [email protected] 
First page
3687
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2700767227
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.