Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

With the widespread adoption of service-oriented architectures (SOA), services with the same functionality but the different Quality of Service (QoS) are proliferating, which is challenging the ability of users to build high-quality services. It is often costly for users to evaluate the QoS of all feasible services; therefore, it is necessary to investigate QoS prediction algorithms to help users find services that meet their needs. In this paper, we propose a QoS prediction algorithm called the MFDK model, which is able to fill in historical sparse QoS values by a non-negative matrix decomposition algorithm and predict future QoS values by a deep neural network. In addition, this model uses a Kalman filter algorithm to correct the model prediction values with real-time QoS observations to reduce its prediction error. Through extensive simulation experiments on the WS-DREAM dataset, we analytically validate that the MFDK model has better prediction accuracy compared to the baseline model, and it can maintain good prediction results under different tensor densities and observation densities. We further demonstrate the rationality of our proposed model and its prediction performance through model ablation experiments and parameter tuning experiments.

Details

Title
Dynamic QoS Prediction Algorithm Based on Kalman Filter Modification
Author
Yan, Yunfei 1 ; Sun, Peng 1 ; Zhang, Jieyong 1 ; Ma, Yutang 1 ; Zhao, Liang 1 ; Qin, Yueyi 2 

 Information and Navigation College, Air Force Engineering University, Xi’an 710077, China; [email protected] (Y.Y.); [email protected] (J.Z.); [email protected] (Y.M.); [email protected] (L.Z.) 
 School of Economics and Management, Chang’an University, Xi’an 710077, China; [email protected] 
First page
5651
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2700773025
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.