It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Deep learning (DL) based approach aims to construct a full workflow solution for cervical cancer with external beam radiation therapy (EBRT) and brachytherapy (BT). The purpose of this study was to evaluate the accuracy of EBRT planning structures derived from DL based auto-segmentation compared with standard manual delineation. Auto-segmentation model based on convolutional neural networks (CNN) was developed to delineate clinical target volumes (CTVs) and organs at risk (OARs) in cervical cancer radiotherapy. A total of 300 retrospective patients from multiple cancer centers were used to train and validate the model, and 75 independent cases were selected as testing data. The accuracy of auto-segmented contours were evaluated using geometric and dosimetric metrics including dice similarity coefficient (DSC), 95% hausdorff distance (95%HD), jaccard coefficient (JC) and dose-volume index (DVI). The correlation between geometric metrics and dosimetric difference was performed by Spearman’s correlation analysis. The right and left kidney, bladder, right and left femoral head showed superior geometric accuracy (DSC: 0.88–0.93; 95%HD: 1.03 mm–2.96 mm; JC: 0.78–0.88), and the Bland–Altman test obtained dose agreement for these contours (P > 0.05) between manual and DL based methods. Wilcoxon’s signed-rank test indicated significant dosimetric differences in CTV, spinal cord and pelvic bone (P < 0.001). A strong correlation between the mean dose of pelvic bone and its 95%HD (R = 0.843, P < 0.001) was found in Spearman’s correlation analysis, and the remaining structures showed weak link between dosimetric difference and all of geometric metrics. Our auto-segmentation achieved a satisfied agreement for most EBRT planning structures, although the clinical acceptance of CTV was a concern. DL based auto-segmentation was an essential component in cervical cancer workflow which would generate the accurate contouring.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Zhejiang University, Department of Radiation Oncology, Women’s Hospital, School of Medicine, Hangzhou, China (GRID:grid.13402.34) (ISNI:0000 0004 1759 700X)