Full text

Turn on search term navigation

© 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Optical response of crystalline solids is to a large extent driven by excitations that promote electrons among individual bands. This allows one to apply optical and magneto‐optical methods to determine experimentally the energy band gap —a fundamental property crucial to our understanding of any solid—with a great precision. Here it is shown that such conventional methods, applied with great success to many materials in the past, do not work in topological Dirac semimetals with a dispersive nodal line. There, the optically deduced band gap depends on how the magnetic field is oriented with respect to the crystal axes. Such highly unusual behavior is explained in terms of band‐gap renormalization driven by Lorentz boosts which results from the Lorentz‐covariant form of the Dirac Hamiltonian relevant for the nodal line at low energies.

Details

Title
Lorentz‐Boost‐Driven Magneto‐Optics in a Dirac Nodal‐Line Semimetal
Author
Wyzula, Jan 1 ; Lu, Xin 2 ; Santos‐Cottin, David 3 ; Mukherjee, Dibya Kanti 4 ; Mohelský, Ivan 1 ; Le Mardelé, Florian 3 ; Novák, Jiří 5 ; Novak, Mario 6 ; Sankar, Raman 7 ; Krupko, Yuriy 8 ; Piot, Benjamin A. 1 ; Lee, Wei‐Li 7 ; Akrap, Ana 3 ; Potemski, Marek 9 ; Goerbig, Mark O. 2 ; Orlita, Milan 10   VIAFID ORCID Logo 

 LNCMI‐CNRS UPR3228, Université Grenoble Alpes, Université Toulouse 3, INSA Toulouse, EMFL, Grenoble Cedex 9, France 
 Laboratoire de Physique des Solides, Université Paris Saclay, Orsay Cedex, France 
 Department of Physics, University of Fribourg, Fribourg, Switzerland 
 Laboratoire de Physique des Solides, Université Paris Saclay, Orsay Cedex, France, Department of Physics, Indiana University, Bloomington, IN, USA 
 Department of Condensed Matter Physics, Masaryk University, Brno, Czech Republic 
 Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia 
 Institute of Physics, Academia Sinica, Taipei, Taiwan 
 LNCMI‐CNRS UPR3228, Université Grenoble Alpes, Université Toulouse 3, INSA Toulouse, EMFL, Grenoble Cedex 9, France, Institut d'Electronique et des Systemes, CNRS, UMR 5214, Université de Montpellier, Montpellier, France 
 LNCMI‐CNRS UPR3228, Université Grenoble Alpes, Université Toulouse 3, INSA Toulouse, EMFL, Grenoble Cedex 9, France, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warszawa, Poland 
10  LNCMI‐CNRS UPR3228, Université Grenoble Alpes, Université Toulouse 3, INSA Toulouse, EMFL, Grenoble Cedex 9, France, Institute of Physics, Faculty of Mathematics and Physics, Charles University, Prague 2, Czech Republic 
Section
Research Articles
Publication year
2022
Publication date
Aug 1, 2022
Publisher
John Wiley & Sons, Inc.
e-ISSN
21983844
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2702049044
Copyright
© 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.