It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Rapid development of renewable energy sources, particularly solar photovoltaics (PV), is critical to mitigate climate change. As a result, India has set ambitious goals to install 500 gigawatts of solar energy capacity by 2030. Given the large footprint projected to meet renewables energy targets, the potential for land use conflicts over environmental values is high. To expedite development of solar energy, land use planners will need access to up-to-date and accurate geo-spatial information of PV infrastructure. In this work, we developed a spatially explicit machine learning model to map utility-scale solar projects across India using freely available satellite imagery with a mean accuracy of 92%. Our model predictions were validated by human experts to obtain a dataset of 1363 solar PV farms. Using this dataset, we measure the solar footprint across India and quantified the degree of landcover modification associated with the development of PV infrastructure. Our analysis indicates that over 74% of solar development In India was built on landcover types that have natural ecosystem preservation, or agricultural value.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Microsoft AI for Good Research Lab, Redmond, USA
2 Forum for the Future, New Delhi, India
3 The Nature of Conservancy (TNC), New Delhi, India