It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Agriculture relies on the intensive use of synthetic nitrogen (N) fertilizers to maximize crop yields, which has led to the transformation of agricultural soils into high-nitrifying environments. Nevertheless, nitrification inhibitors (NIs) have been developed to suppress soil-nitrifier activity and decrease N losses. The NIs 3,4-dimethylpyrazole phosphate (DMPP) and 2-(3,4-dimethyl-1H-pyrazol-1-yl) succinic acid isomeric mixture (DMPSA) are able to reduce N2O emissions and maintain soil NH4+ for a longer time. Although both NIs have been proven to be effective to inhibit soil nitrification, their exact mode of action has not been confirmed. We aimed to provide novel insights to further understand the mode of action of DMP-based NIs. We evaluated the performance of DMPP and DMPSA in soil and pure cultures of nitrifying bacteria Nitrosomonas europaea.
Results
DMPSA did not inhibit nitrification in pure cultures of N. europaea. In the soil, we evidenced that DMPSA needs to be broken into DMP to achieve the inhibition of nitrification, which is mediated by a soil biological process that remains to be identified. Moreover, both DMPP and DMPSA are thought to inhibit nitrification due to their ability to chelate the Cu2+ cations that the ammonia monooxygenase enzyme (AMO) needs to carry on the first step of NH4+ oxidation. However, the efficiency of DMPP was not altered regardless the Cu2+ concentration in the medium. In addition, we also showed that DMPP targets AMO but not hydroxylamine oxidoreductase enzyme (HAO).
Conclusions
The inability of DMPSA to inhibit nitrification in pure cultures together with the high efficiency of DMPP to inhibit nitrification even in presence of toxic Cu2+ concentration in the medium, suggest that the mode of action of DMP-based NIs does not rely on their capacity as metal chelators.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details






1 Public University of Navarre-UPNa, Institute for Multidisciplinary Research in Applied Biology (IMAB), Pamplona, Spain (GRID:grid.410476.0) (ISNI:0000 0001 2174 6440)
2 University of the Basque Country (UPV/EHU), Department of Plant Biology and Ecology, Faculty of Science and Technology, Bilbao, Spain (GRID:grid.11480.3c) (ISNI:0000000121671098)
3 University of the Basque Country (UPV/EHU), Department of Plant Biology and Ecology, Faculty of Science and Technology, Bilbao, Spain (GRID:grid.11480.3c) (ISNI:0000000121671098); Basque Foundation for Science, Ikerbasque, Bilbao, Spain (GRID:grid.424810.b) (ISNI:0000 0004 0467 2314)