It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Cancer is a heterogeneous disease in which tumor genes cooperate as well as adapt and evolve to the changing conditions for individual patients. It is a meaningful task to discover the personalized cancer driver genes that can provide diagnosis and target drug for individual patients. However, most of existing methods mainly ranks potential personalized cancer driver genes by considering the patient-specific nodes information on the gene/protein interaction network. These methods ignore the personalized edge weight information in gene interaction network, leading to false positive results.
Results
In this work, we presented a novel algorithm (called PDGPCS) to predict the Personalized cancer Driver Genes based on the Prize-Collecting Steiner tree model by considering the personalized edge weight information. PDGPCS first constructs the personalized weighted gene interaction network by integrating the personalized gene expression data and prior known gene/protein interaction network knowledge. Then the gene mutation data and pathway data are integrated to quantify the impact of each mutant gene on every dysregulated pathway with the prize-collecting Steiner tree model. Finally, according to the mutant gene’s aggregated impact score on all dysregulated pathways, the mutant genes are ranked for prioritizing the personalized cancer driver genes. Experimental results on four TCGA cancer datasets show that PDGPCS has better performance than other personalized driver gene prediction methods. In addition, we verified that the personalized edge weight of gene interaction network can improve the prediction performance.
Conclusions
PDGPCS can more accurately identify the personalized driver genes and takes a step further toward personalized medicine and treatment. The source code of PDGPCS can be freely downloaded from https://github.com/NWPU-903PR/PDGPCS.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer