Abstract

Rupture of intracranial aneurysm is the first cause of subarachnoid hemorrhage, second only to cerebral thrombosis and hypertensive cerebral hemorrhage, and the mortality rate is very high. MRI technology plays an irreplaceable role in the early detection and diagnosis of intracranial aneurysms and supports evaluating the size and structure of aneurysms. The increase in many aneurysm images, may be a massive workload for the doctors, which is likely to produce a wrong diagnosis. Therefore, we proposed a simple and effective comprehensive residual attention network (CRANet) to improve the accuracy of aneurysm detection, using a residual network to extract the features of an aneurysm. Many experiments have shown that the proposed CRANet model could detect aneurysms effectively. In addition, on the test set, the accuracy and recall rates reached 97.81% and 94%, which significantly improved the detection rate of aneurysms.

Details

Title
CRANet: a comprehensive residual attention network for intracranial aneurysm image classification
Author
Zhao, Yawu; Wang, Shudong; Ren, Yande; Zhang, Yulin
Pages
1-15
Section
Research
Publication year
2022
Publication date
2022
Publisher
BioMed Central
e-ISSN
14712105
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2703765461
Copyright
© 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.