It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Whether Candida interacts with Gram-positive bacteria, such as Staphylococcus aureus, coagulase negative Staphylococci (CNS) and Enterococci, to enhance their invasive potential from the microbiome of ICU patients remains unclear. Several effective anti-septic, antibiotic, anti-fungal, and non-decontamination based interventions studied for prevention of ventilator associated pneumonia (VAP) and other ICU acquired infections among patients receiving prolonged mechanical ventilation (MV) are known to variably impact Candida colonization. The collective observations within control and intervention groups from numerous ICU infection prevention studies enables tests of these postulated microbial interactions in the clinical context.
Methods
Four candidate generalized structural equation models (GSEM), each with Staphylococcus aureus, CNS and Enterococci colonization, defined as latent variables, were confronted with blood culture and respiratory tract isolate data derived from 460 groups of ICU patients receiving prolonged MV from 283 infection prevention studies.
Results
Introducing interaction terms between Candida colonization and each of S aureus (coefficient + 0.40; 95% confidence interval + 0.24 to + 0.55), CNS (+ 0.68; + 0.34 to + 1.0) and Enterococcal (+ 0.56; + 0.33 to + 0.79) colonization (all as latent variables) improved the fit for each model. The magnitude and significance level of the interaction terms were similar to the positive associations between exposure to topical antibiotic prophylaxis (TAP) on Enterococcal (+ 0.51; + 0.12 to + 0.89) and Candida colonization (+ 0.98; + 0.35 to + 1.61) versus the negative association of TAP with S aureus (− 0.45; − 0.70 to − 0.20) colonization and the negative association of anti-fungal exposure and Candida colonization (− 1.41; − 1.6 to − 0.72).
Conclusions
GSEM modelling of published ICU infection prevention data enables the postulated interactions between Candida and Gram-positive bacteria to be tested using clinically derived data. The optimal model implies interactions occurring in the human microbiome facilitating bacterial invasion and infection. This interaction might also account for the paradoxically high bacteremia incidences among studies of TAP in ICU patients.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer