It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
In response to the COVID-19 pandemic many clinical studies have been initiated leading to the need for efficient ways to track and analyze study results. We expanded our previous project that tracked registered COVID-19 clinical studies to also track result articles generated from these studies. Our objective was to develop a data science approach to identify and analyze all publications linked to COVID-19 clinical studies and generate a prioritized list of publications for efficient understanding of the state of COVID-19 clinical research.
Methods
We conducted searches of ClinicalTrials.gov and PubMed to identify articles linked to COVID-19 studies, and developed criteria based on the trial phase, intervention, location, and record recency to develop a prioritized list of result publications.
Results
The performed searchers resulted in 1 022 articles linked to 565 interventional trials (17.8% of all 3 167 COVID-19 interventional trials as of 31 January 2022). 609 publications were identified via abstract-link in PubMed and 413 via registry-link in ClinicalTrials.gov, with 27 articles linked from both sources. Of the 565 trials publishing at least one article, 197 (34.9%) had multiple linked publications. An attention score was assigned to each publication to develop a prioritized list of all publications linked to COVID-19 trials and 83 publications were identified that are result articles from late phase (Phase 3) trials with at least one US site and multiple study record updates. For COVID-19 vaccine trials, 108 linked result articles for 64 trials (14.7% of 436 total COVID-19 vaccine trials) were found.
Conclusions
Our method allows for the efficient identification of important COVID-19 articles that report results of registered clinical trials and are connected via a structured article-trial link. Our data science methodology also allows for consistent and as needed data updates and is generalizable to other conditions of interest.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer