It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
The purpose of this study was to analyze the relationship between different productive factors and piglets weaned per sow per year (PSY) in 291 large-scale pig farms and analyze the impact of the changes in different factors on PSY. We chose nine different algorithm models based on machine learning to calculate the influence of each variable on every farm according to its current situation, leading to personalize the improvement of the impact in the specific circumstances of each farm, proposing a production guidance plan of PSY improvement for every farm. According to the comparison of mean absolute error (MAE), 95% confidence interval (CI) and R2, the optimal solution was conducted to calculate the influence of 17 production factors of each pig farm on PSY improvement, finding out the bottleneck corresponding to each pig farm. The level of PSY was further analyzed when the bottleneck factor of each pig farm changed by 0.5 standard deviation (SD).
Results
17 production factors were non-linearly related to PSY. The top five production factors with the highest correlation with PSY were the number of weaned piglets per litter (WPL) (0.6694), mating rate within 7 days after weaning (MR7DW) (0.6606), number of piglets born alive per litter (PBAL) (0.6517), the total number of piglets per litter (TPL) (0.5706) and non-productive days (NPD) (− 0.5308). Among nine algorithm models, the gradient boosting regressor model had the highest R2, smallest MAE and 95% CI, applied for personalized analysis. When one of 17 production factors of 291 large-scale pig farms changed by 0.5 SD, 101 pig farms (34.7%) can increase 1.41 PSY (compared to its original value) on average by adding the production days, and 60 pig farms (20.6%) can increase 1.14 PSY on average by improving WPL, 45 pig farms (15.5%) can increase 1.63 PSY by lifting MR7DW.
Conclusions
The main productive factors related to PSY included WPL, MR7DW, PBAL, TPL and NPD. The gradient boosting regressor model was the optimal method to individually analyze productive factors that are non-linearly related to PSY.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer