Abstract

Segmentation of abdominal Computed Tomography (CT) scan is essential for analyzing, diagnosing, and treating visceral organ diseases (e.g., hepatocellular carcinoma). This paper proposes a novel neural network (Res-PAC-UNet) that employs a fixed-width residual UNet backbone and Pyramid Atrous Convolutions, providing a low disk utilization method for precise liver CT segmentation. The proposed network is trained on medical segmentation decathlon dataset using a modified surface loss function. Additionally, we evaluate its quantitative and qualitative performance; the Res16-PAC-UNet achieves a Dice coefficient of 0.950 ± 0.019 with less than half a million parameters. Alternatively, the Res32-PAC-UNet obtains a Dice coefficient of 0.958 ± 0.015 with an acceptable parameter count of approximately 1.2 million.

Details

Title
A lightweight neural network with multiscale feature enhancement for liver CT segmentation
Author
Ansari, Mohammed Yusuf 1 ; Yang, Yin 2 ; Balakrishnan, Shidin 1 ; Abinahed, Julien 1 ; Al-Ansari, Abdulla 1 ; Warfa, Mohamed 3 ; Almokdad, Omran 1 ; Barah, Ali 1 ; Omer, Ahmed 1 ; Singh, Ajay Vikram 4 ; Meher, Pramod Kumar 5 ; Bhadra, Jolly 6 ; Halabi, Osama 6 ; Azampour, Mohammad Farid 7 ; Navab, Nassir 7 ; Wendler, Thomas 7 ; Dakua, Sarada Prasad 1 

 Hamad Medical Corporation, Doha, Qatar (GRID:grid.413548.f) (ISNI:0000 0004 0571 546X) 
 Hamad Bin Khalifa University, Doha, Qatar (GRID:grid.452146.0) (ISNI:0000 0004 1789 3191) 
 Wake Forest Baptist Medical Center, Winston-Salem, USA (GRID:grid.412860.9) (ISNI:0000 0004 0459 1231) 
 German Federal Institute for Risk Assessment (BfR), Berlin, Germany (GRID:grid.417830.9) (ISNI:0000 0000 8852 3623) 
 C. V. Raman Global University, Bhubaneswar, India (GRID:grid.417830.9) 
 Qatar University, Doha, Qatar (GRID:grid.412603.2) (ISNI:0000 0004 0634 1084) 
 Technische Universität München, Munich, Germany (GRID:grid.6936.a) (ISNI:0000000123222966) 
Publication year
2022
Publication date
2022
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2704130438
Copyright
© The Author(s) 2022. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.