Full text

Turn on search term navigation

Copyright © 2022 Lin Zhang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

Background. Neuroinflammation-induced phosphorylated Tau (p-Tau) deposition in central nervous system contributes to neurodegenerative disorders. Propofol possesses neuroprotective properties. We investigated its impacts on tumor necrosis factor-α (TNF-α)-mediated p-Tau deposition in neurons. Methods. Mouse hippocampal neurons were exposed to propofol followed by TNF-α. Cell viability, p-Tau, mitophagy, reactive oxygen species (ROS), NOD-like receptor protein 3 (NLRP3), antioxidant enzymes, and p62/Keap1/Nrf2 pathway were investigated. Results. TNF-α promoted p-Tau accumulation in a concentration- and time-dependent manner. TNF-α (20 ng/mL, 4 h) inhibited mitophagy while increased ROS accumulation and NLRP3 activation. It also induced glycogen synthase kinase-3β (GSK3β) while inhibited protein phosphatase 2A (PP2A) phosphorylation. All these effects were attenuated by 25 μM propofol. In addition, TNF-α-induced p-Tau accumulation was attenuated by ROS scavenger, NLRP3 inhibitor, GSK3β inhibitor, or PP2A activator. Besides, compared with control neurons, 100 μM propofol decreased p-Tau accumulation. It also decreased ROS and NLRP3 activation, modulated GSK3β/PP2A phosphorylation, leaving mitophagy unchanged. Further, 100 μM propofol induced p62 expression, reduced Keap1 expression, triggered the nuclear translocation of Nrf2, and upregulated superoxide dismutase (SOD) and heme oxygenase-1 (HO-1) expression, which was abolished by p62 knockdown, Keap1 overexpression, or Nrf2 inhibitor. Consistently, the inhibitory effect of 100 μM propofol on ROS and p-Tau accumulation was mitigated by p62 knockdown, Keap1 overexpression, or Nrf2 inhibitor. Conclusions. In hippocampal neurons, TNF-α inhibited mitophagy, caused oxidative stress and NLRP3 activation, leading to GSK3β/PP2A-dependent Tau phosphorylation. Propofol may reduce p-Tau accumulation by reversing mitophagy and oxidative stress-related events. Besides, propofol may reduce p-Tau accumulation by modulating SOD and HO-1 expression through p62/Keap1/Nrf2 pathway.

Details

Title
The Mechanism of TNF-α-Mediated Accumulation of Phosphorylated Tau Protein and Its Modulation by Propofol in Primary Mouse Hippocampal Neurons: Role of Mitophagy, NLRP3, and p62/Keap1/Nrf2 Pathway
Author
Zhang, Lin 1 ; Song, Hong 2 ; Ding, Jie 3 ; Dong-jie, Wang 1 ; Shi-peng, Zhu 1 ; Liu, Chi 4   VIAFID ORCID Logo  ; Jin, Xian 2   VIAFID ORCID Logo  ; Jia-wei, Chen 5   VIAFID ORCID Logo 

 Department of Anesthesiology, Jing’an District Central Hospital of Shanghai, Fudan University, No259 XiKang Road, Shanghai 200040, China 
 Department of Critical Care Medicine, Jing’an District Central Hospital of Shanghai, Fudan University, No259 XiKang Road, Shanghai 200040, China 
 Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, No270 DongAn Road, Shanghai 200032, China 
 Department of Geriatrics Center, National Clinical Research Center for Aging and Medicine, Jing’an District Central Hospital of Shanghai, Fudan University, No259 XiKang Road, Shanghai 200040, China 
 Department of Anesthesiology, Jing’an District Central Hospital of Shanghai, Fudan University, No259 XiKang Road, Shanghai 200040, China; Department of Critical Care Medicine, Jing’an District Central Hospital of Shanghai, Fudan University, No259 XiKang Road, Shanghai 200040, China 
Editor
Hareram Birla
Publication year
2022
Publication date
2022
Publisher
John Wiley & Sons, Inc.
ISSN
19420900
e-ISSN
19420994
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2704753788
Copyright
Copyright © 2022 Lin Zhang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/