Full Text

Turn on search term navigation

© 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Belowground urban stormwater networks (BUSNs) are critical for removing excess rainfall from impervious urban areas and preventing or mitigating urban flooding. However, available BUSN data are sparse, preventing the modeling and analysis of urban hydrologic processes at regional and larger scales. We propose a novel algorithm for estimating BUSNs by drawing on concepts from graph theory and existing, extensively available land surface data, such as street network, topography, and land use/land cover. First, we derive the causal relationships between the topology of BUSNs and urban surface features based on graph theory concepts. We then apply the causal relationships and estimate BUSNs using web-service data retrieval, spatial analysis, and high-performance computing techniques. Finally, we validate the derived BUSNs in the metropolitan areas of Los Angeles, Seattle, Houston, and Baltimore in the US, where real BUSN data are partly available to the public. Results show that our algorithm can effectively capture 59 %–76 % of the topology of real BUSN data, depending on the supporting data quality. This algorithm has promising potential to support large-scale urban hydrologic modeling and future urban drainage system planning.

Details

Title
An algorithm for deriving the topology of belowground urban stormwater networks
Author
Chegini, Taher 1 ; Hong-Yi, Li 1   VIAFID ORCID Logo 

 Department of Civil and Environmental Engineering, University of Houston, 4226 Martin Luther King Boulevard, Houston, TX 77204, USA 
Pages
4279-4300
Publication year
2022
Publication date
2022
Publisher
Copernicus GmbH
ISSN
10275606
e-ISSN
16077938
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2704836574
Copyright
© 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.