Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper proposes a novel fault-tolerant control method based on the integral sliding mode technique for unmatched uncertain linear systems with external perturbations. Differently from the existing works, the uncertainties under consideration have an unmatched norm-bounded form in the system and input matrix. Based on linear matrix inequalities, the existence conditions of the sliding mode surface are presented. The unknown fault information is then estimated by some adaptive laws. On the grounds of that, an integral sliding mode controller is also obtained to guarantee the disturbance attenuation and fault tolerance for linear uncertain systems with unmatched uncertainties and actuator faults from the initial time. Finally, the comparative simulation results verify the effectiveness of our presented scheme.

Details

Title
Fault-Tolerant Control of Linear Systems with Unmatched Uncertainties Based on Integral Sliding Mode Technique
Author
Li-Ying, Hao  VIAFID ORCID Logo  ; Lian-Sheng, Zhou  VIAFID ORCID Logo 
First page
241
Publication year
2022
Publication date
2022
Publisher
MDPI AG
ISSN
20760825
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2706027039
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.