Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Similar to canine inflammatory enteropathy, inflammatory bowel disease (IBD) is a chronic idiopathic condition characterized by remission periods and recurrent flares in which diarrhea, visceral pain, rectal bleeding/bloody stools, and weight loss are the main clinical symptoms. Intestinal barrier function alterations often persist in the remission phase of the disease without ongoing inflammatory processes. However, current therapies include mainly anti-inflammatory compounds that fail to promote functional symptoms-free disease remission, urging new drug discoveries to handle patients during this step of the disease. ALIAmides (ALIA, autacoid local injury antagonism) are bioactive fatty acid amides that recently gained attention because of their involvement in the control of inflammatory response, prompting the use of these molecules as plausible therapeutic strategies in the treatment of several chronic inflammatory conditions. N-palmitoyl-D-glucosamine (PGA), an under-researched ALIAmide, resulted in being safe and effective in preclinical models of inflammation and pain, suggesting its potential engagement in the treatment of IBD. In our study, we demonstrated that micronized PGA significantly and dose-dependently reduces colitis severity, improves intestinal mucosa integrity by increasing the tight junction proteins expression, and downregulates the TLR-4/NLRP3/iNOS pathway via PPAR-α receptors signaling in DNBS-treated mice. The possibility of clinically exploiting micronized PGA as support for the treatment and prevention of inflammation-related changes in IBD patients would represent an innovative, effective, and safe strategy.

Details

Title
N-Palmitoyl-D-Glucosamine Inhibits TLR-4/NLRP3 and Improves DNBS-Induced Colon Inflammation through a PPAR-α-Dependent Mechanism
Author
Palenca, Irene 1   VIAFID ORCID Logo  ; Seguella, Luisa 1   VIAFID ORCID Logo  ; Alessandro Del Re 1 ; Silvia Basili Franzin 1 ; Corpetti, Chiara 1 ; Pesce, Marcella 2   VIAFID ORCID Logo  ; Rurgo, Sara 2 ; Steardo, Luca 3 ; Sarnelli, Giovanni 2   VIAFID ORCID Logo  ; Esposito, Giuseppe 1   VIAFID ORCID Logo 

 Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy 
 Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy 
 Department of Psychiatry, Giustino Fortunato University, 82100 Benevento, Italy 
First page
1163
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
2218273X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2706102055
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.