Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The template-based chip design method aims to build rapidly. However, it still need synthesis and simulation flows to get the performance, power, and area (PPA) reports and find the proper parameters set in the design space exploration, which takes a long time. Therefore, a rapid and accurate PPA prediction method is proposed. At first, the PPA Prediction Model based on Multivariate Linear regression (ML-PM) is proposed to fit the multiple parameters’ influence on the PPA via the single parameter affection. Moreover, a Multivariate NonLinear regression Prediction Model (MNL-PM) based on Amdahl’s law is introduced to improve the accuracy of the PPA estimation. The empirical evaluation of the method shows that the PPA prediction for the template-based chip design methods can reach 98.60%, 99.19%, and 98.53% accuracy on performance, power, and, area separately, when compared with the PPA generated via the synthesis and simulation flows.

Details

Title
Rapid and Accurate PPA Prediction for the Template-Based Processor Design Methods
Author
Tang, Mingxin  VIAFID ORCID Logo  ; Huang, Libo; Chen, Wei
First page
8383
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2706111647
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.