Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Graph Convolutional Neural Network (GCN) is widely used in text classification tasks. Furthermore, it has been effectively used to accomplish tasks that are thought to have a rich relational structure. However, due to the sparse adjacency matrix constructed by GCN, GCN cannot make full use of context-dependent information in text classification, and it is not good at capturing local information. The Bidirectional Encoder Representation from Transformers (BERT) has the ability to capture contextual information in sentences or documents, but it is limited in capturing global (the corpus) information about vocabulary in a language, which is the advantage of GCN. Therefore, this paper proposes an improved model to solve the above problems. The original GCN uses word co-occurrence relationships to build text graphs. Word connections are not abundant enough and cannot capture context dependencies well, so we introduce a semantic dictionary and dependencies. While the model enhances the ability to capture contextual dependencies, it lacks the ability to capture sequences. Therefore, we introduced BERT and Bi-directional Long Short-Term Memory (BiLSTM) Network to perform deeper learning on the features of text, thereby improving the classification effect of the model. The experimental results show that our model is more effective than previous research reports on four text classification datasets.

Details

Title
The Study on the Text Classification Based on Graph Convolutional Network and BiLSTM
Author
Xue, Bingxin; Zhu, Cui; Wang, Xuan; Zhu, Wenjun
First page
8273
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2706112709
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.