Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The Potato virus Y (PVY) is responsible for huge economic losses for the potato industry worldwide and is the fifth most consequential plant virus globally. The main strategies for virus control are to limit aphid vectors, produce virus-free seed potatoes, and breed virus-resistant varieties. The breeding of PVY-resistant varieties is the safest and most effective method in terms of cost and environmental protection. Rychc, a gene that confers extreme resistance to PVY, is from S. chacoense, which is a wild diploid potato species that is widely used in many PVY-resistant breeding projects. In this study, Rychc was fine mapped and successfully cloned from S. chacoense accession 40-3. We demonstrated that Rychc encodes a TIR-NLR protein by stably transforming a diploid susceptible cultivar named AC142 and a tetraploid potato variety named E3. The Rychc conferred extreme resistance to PVYO, PVYN:O and PVYNTN in both of the genotypes. To investigate the genetic events occurring during the evolution of the Rychc locus, we sequenced 160 Rychc homologs from 13 S. chacoense genotypes. Based on the pattern of sequence identities, 160 Rychc homologs were divided into 11 families. In Family 11 including Rychc, we found evidence for Type I evolutionary patterns with frequent sequence exchanges, obscured orthologous relationships and high non-synonymous to synonymous substitutions (Ka/Ks), which is consistent with rapid diversification and positive selection in response to rapid changes in the PVY genomes. Furthermore, a functional marker named MG64-17 was developed in this study that indicates the phenotype with 100% accuracy and, therefore, can be used for marker-assisted selection in breeding programs that use S. chacoense as a breeding resource.

Details

Title
Rychc Confers Extreme Resistance to Potato virus Y in Potato
Author
Li, Gege 1 ; Shao, Jingjing 1 ; Wang, Yuwen 1 ; Liu, Tengfei 1 ; Tong, Yuhao 1 ; Jansky, Shelley 2   VIAFID ORCID Logo  ; Xie, Conghua 1 ; Song, Botao 3   VIAFID ORCID Logo  ; Cai, Xingkui 1   VIAFID ORCID Logo 

 Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China 
 Department of Horticulture, University of Wisconsin, Madison, WI 53706, USA 
 Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China 
First page
2577
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734409
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2706122310
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.