Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The detection of brain metastases (BM) in their early stages could have a positive impact on the outcome of cancer patients. The authors previously developed a framework for detecting small BM (with diameters of <15 mm) in T1-weighted contrast-enhanced 3D magnetic resonance images (T1c). This study aimed to advance the framework with a noisy-student-based self-training strategy to use a large corpus of unlabeled T1c data. Accordingly, a sensitivity-based noisy-student learning approach was formulated to provide high BM detection sensitivity with a reduced count of false positives. This paper (1) proposes student/teacher convolutional neural network architectures, (2) presents data and model noising mechanisms, and (3) introduces a novel pseudo-labeling strategy factoring in the sensitivity constraint. The evaluation was performed using 217 labeled and 1247 unlabeled exams via two-fold cross-validation. The framework utilizing only the labeled exams produced 9.23 false positives for 90% BM detection sensitivity, whereas the one using the introduced learning strategy led to ~9% reduction in false detections (i.e., 8.44). Significant reductions in false positives (>10%) were also observed in reduced labeled data scenarios (using 50% and 75% of labeled data). The results suggest that the introduced strategy could be utilized in existing medical detection applications with access to unlabeled datasets to elevate their performances.

Details

Title
Advancing Brain Metastases Detection in T1-Weighted Contrast-Enhanced 3D MRI Using Noisy Student-Based Training
Author
Dikici, Engin 1   VIAFID ORCID Logo  ; Nguyen, Xuan V 1 ; Bigelow, Matthew 1 ; Ryu, John L 2   VIAFID ORCID Logo  ; Prevedello, Luciano M 1   VIAFID ORCID Logo 

 Department of Radiology, The Ohio State University College of Medicine, Columbus, OH 43210, USA 
 ProScan Imaging, Columbus, OH 43230, USA 
First page
2023
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20754418
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2706140961
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.