Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The use of ultra-thin spacer layers above metal has become a popular approach to the enhancement of optical sensitivity and immobilization efficiency of label-free SPR sensors. At the same time, the giant optical anisotropy inherent to transition metal dichalcogenides may significantly affect characteristics of the studied sensors. Here, we present a systematic study of the optical sensitivity of an SPR biosensor platform with auxiliary layers of MoS2. By performing the analysis in a broad spectral range, we reveal the effect of exciton-driven dielectric response of MoS2 and its anisotropy on the sensitivity characteristics. The excitons are responsible for the decrease in the optimal thickness of MoS2. Furthermore, despite the anisotropy being at record height, it affects the sensitivity only slightly, although the effect becomes stronger in the near-infrared spectral range, where it may lead to considerable change in the optimal design of the biosensor.

Details

Title
Optical Anisotropy and Excitons in MoS2 Interfaces for Sensitive Surface Plasmon Resonance Biosensors
Author
Eghbali, Amir  VIAFID ORCID Logo  ; Vyshnevyy, Andrey A  VIAFID ORCID Logo  ; Arsenin, Aleksey V  VIAFID ORCID Logo  ; Volkov, Valentyn S  VIAFID ORCID Logo 
First page
582
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20796374
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2706143936
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.